Abstract

Fluid–structure interactions (FSIs) can be successfully leveraged to develop passive fluid control systems and active structures that respond to targeted flow conditions. When bistable structures interact with flowing fluids, interesting dynamics, such as large reconfigurations due to snap-through instability, can arise. Here, we demonstrate how to control the flowrate of a viscous fluid in a channel by tuning the boundary conditions of a bistable arch (i.e., postbuckled beam) incorporated along the channel sidewall. We introduce a torsionally supported postbuckled beam immersed in fluid flow to investigate flow–deformation relationships, surface pressure distributions, and critical flowrates. Varying torsional spring stiffness allows to span from clamped-clamped to hinged-hinged, and all intermediate stiffness rotational boundary conditions. We develop an analytical model and numerical continuation methods to determine the critical flowrate required to snap the bistable arch and the effects of the support’s torsional stiffness. Thanks to this approach, we demonstrate a wide range of attainable critical flowrates that can be tuned by varying the boundary conditions of the bistable arch.

References

1.
Radisson
,
B.
, and
Kanso
,
E.
,
2023
, “
Elastic Snap-Through Instabilities Are Governed by Geometric Symmetries
,”
Phys. Rev. Lett.
,
130
(
23
), p.
236102
.
2.
Litvinov
,
I.
,
Spaer Milo
,
G.
,
Liberzon
,
A.
, and
Krylov
,
S.
,
2024
, “
Piezoresistive Snap-Through Detection for Bifurcation-Based MEMS Sensors
,”
Appl. Phys. Lett.
,
124
(
23
), p.
233508
.
3.
Luo
,
Y.
,
Patel
,
D. K.
,
Li
,
Z.
,
Hu
,
Y.
,
Luo
,
H.
,
Yao
,
L.
, and
Majidi
,
C.
,
2024
, “
Intrinsically Multistable Soft Actuator Driven by Mixed-Mode Snap-Through Instabilities
,”
Adv. Sci.
,
11
(
18
), p.
2307391
.
4.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2021
, “
Programming Nonreciprocity and Reversibility in Multistable Mechanical Metamaterials
,”
Nat. Commun.
,
12
(
1
), p.
3454
.
5.
Liu
,
J.
,
Teunisse
,
M.
,
Korovin
,
G.
,
Vermaire
,
I. R.
,
Jin
,
L.
,
Bense
,
H.
, and
van Hecke
,
M.
,
2024
, “
Controlled Pathways and Sequential Information Processing in Serially Coupled Mechanical Hysterons
,”
Proc. Natl. Acad. Sci. USA
,
121
(
22
), p.
e2308414121
.
6.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2020
, “
Snapping of Hinged Arches Under Displacement Control: Strength Loss and Nonreciprocity
,”
Phys. Rev. E
,
101
(
5
), p.
053004
.
7.
Bonthron
,
M.
, and
Tubaldi
,
E.
,
2025
, “
Transition Wave Interference in Multistable Mechanical Metamaterials
,”
ASME J. Appl. Mech.
,
92
(
5
), p. 051005.
8.
Boisseau
,
S.
,
Despesse
,
G.
,
Monfray
,
S.
,
Puscasu
,
O.
, and
Skotnicki
,
T.
,
2013
, “
Semi-flexible Bimetal-Based Thermal Energy Harvesters
,”
Smart Mater. Struct.
,
22
(
2
), p.
025021
.
9.
Kessler
,
Y.
,
Ilic
,
B. R.
,
Krylov
,
S.
, and
Liberzon
,
A.
,
2018
, “
Flow Sensor Based on the Snap-Through Detection of a Curved Micromechanical Beam
,”
J. Microelectromech. Syst.
,
27
(
6
), pp.
945
947
.
10.
Fargette
,
A.
,
Neukirch
,
S.
, and
Antkowiak
,
A.
,
2014
, “
Elastocapillary Snapping: Capillarity Induces Snap-Through Instabilities in Small Elastic Beams
,”
Phys. Rev. Lett.
,
112
(
13
), p.
137802
.
11.
Lorenzoni
,
M.
,
Llobet
,
J.
, and
Perez-Murano
,
F.
,
2018
, “
Study of Buckling Behavior at the Nanoscale Through Capillary Adhesion Force
,”
Appl. Phys. Lett.
,
112
(
19
), p.
193102
.
12.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2017
, “
Passive Control of Viscous Flow via Elastic Snap-Through
,”
Phys. Rev. Lett.
,
119
(
14
), p.
144502
.
13.
Arena
,
G.
,
Brinkmeyer
,
A.
,
Theunissen
,
R.
, and
Pirrera
,
A.
,
2017
, “
Adaptive Compliant Structures for Flow Regulation
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2204
), p.
20170334
.
14.
Stone
,
H.
,
Stroock
,
A.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
381
411
.
15.
Kim
,
H.
,
Zhou
,
Q.
,
Kim
,
D.
, and
Oh
,
I.-K.
,
2020
, “
Flow-Induced Snap-Through Triboelectric Nanogenerator
,”
Nano Energy
,
68
, p.
104379
.
16.
Holmes
,
D. P.
,
Tavakol
,
B.
,
Froehlicher
,
G.
, and
Stone
,
H. A.
,
2013
, “
Control and Manipulation of Microfluidic Flow via Elastic Deformations
,”
Soft Matt.
,
9
(
29
), pp.
7049
7053
.
17.
Garg
,
H.
,
Ledda
,
P. G.
,
Pedersen
,
J. S.
, and
Pezzulla
,
M.
,
2024
, “
Passive Viscous Flow Selection via Fluid-Induced Buckling
,”
Phys. Rev. Lett.
,
133
(
8
), p.
084001
.
18.
Jiao
,
S.
, and
Liu
,
M.
,
2021
, “
Snap-Through in Graphene Nanochannels: With Application to Fluidic Control
,”
ACS Appl. Mater. Interfaces
,
13
(
1
), pp.
1158
1168
.
19.
Versluis
,
M.
,
Schmitz
,
B.
,
Von Der Heydt
,
A.
, and
Lohse
,
D.
,
2000
, “
How Snapping Shrimp Snap: Through Cavitating Bubbles
,”
Science
,
289
(
5487
), pp.
2114
2117
.
20.
Oshri
,
O.
,
Goncharuk
,
K.
, and
Feldman
,
Y.
,
2024
, “
Snap-Induced Flow in a Closed Channel
,”
J. Fluid Mech.
,
986
, p.
A12
.
21.
Mahravan
,
E.
, and
Kim
,
D.
,
2023
, “
Snap-Through Instability of a Sheet With Inclined Clamping Ends Under Fluid Flow
,”
Phys. Fluids
,
35
(
12
), p.
127105
.
22.
Chen
,
Z.
,
Liu
,
Y.
, and
Sung
,
H. J.
,
2025
, “
Flow-Induced Oscillations of a Transversely Buckled Flexible Filament
,”
J. Fluid Mech.
,
1006
, p.
A5
.
23.
Kim
,
J.
,
Kim
,
H.
, and
Kim
,
D.
,
2021
, “
Snap-Through Oscillations of Tandem Elastic Sheets in Uniform Flow
,”
J. Fluids Struct.
,
103
, p.
103283
.
24.
Kim
,
H.
,
Lahooti
,
M.
,
Kim
,
J.
, and
Kim
,
D.
,
2021
, “
Flow-Induced Periodic Snap-Through Dynamics
,”
J. Fluid Mech.
,
913
, p.
A52
.
25.
Mao
,
Q.
,
Liu
,
Y.
, and
Sung
,
H. J.
,
2023
, “
Snap-Through Dynamics of a Buckled Flexible Filament in a Uniform Flow
,”
J. Fluid Mech.
,
969
, p.
A33
.
26.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
, 2nd ed.,
Dover Publications
,
Mineola
.
27.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
Cambridge
.
28.
Dankowicz
,
H. J.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
(
Computational Science and Engineering Series
), Vol.
11
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
29.
Bonthron
,
M.
, and
Tubaldi
,
E.
,
2024
, “
Dynamic Behavior of Bistable Shallow Arches: From Intrawell to Chaotic Motion
,”
J. Appl. Mech.
,
91
(
2
), p.
021010
.
You do not currently have access to this content.