Abstract

Circular torus weaves with in-plane curved ribbons exhibit smaller topological defects and a smoother structural configuration. However, the use of circular torus weaves in engineering is hampered by their unclear buckling mechanical properties. This study aims to investigate the buckling behavior of circular torus weaves with in-plane curved ribbons under vertical load through experiments and finite element method. It is indicated that circular torus with in-plane curved ribbon demonstrated greater stability. Failure modes of a circular torus weave include involve inward deformation of the ribbon at the crown line and convex deformation of the node at θ=π/2. The circular torus weaves with ribbons of thicker thickness or wider width exhibited remarkable load-bearing capacity and initial stiffness. The geometric features of circular torus weaves can be characterized using local Gaussian curvature rather than the axial ratio, and it has been observed that the critical buckling load of the structure increases with the increase of the Gaussian curvature. The closed solution proposed in this article can accurately predict the critical buckling load of the circular torus weaves. These findings are expected to provide a valuable reference for structural design and buckling bearing capacity prediction.

References

1.
Yu
,
H.
,
Zhang
,
J.
,
Zhang
,
S.
, and
Han
,
Z.
,
2023
, “
Bionic Structures and Materials Inspired by Plant Leaves: A Comprehensive Review for Innovative Problem-solving
,”
Prog. Mater. Sci.
,
139
, p.
101181
.
2.
Sun
,
X.
,
Xu
,
J.
, and
Qi
,
Z.
,
2024
, “
Mechanism Properties of a Bird-Neck Bionic Rigid-Flexible Structure
,”
Fundam. Res.
,
4
(
6
), pp.
1613
1624
.
3.
Sascha
,
F.
, and
Helmut
,
H.
,
2023
, “
The Morphological Paradigm in Robotics
,”
Stud. Hist. Philos. Sci.
,
100
, pp.
1
11
.
4.
Kulmuni
,
J.
,
Wiley
,
B.
, and
Otto
,
S. P.
,
2023
, “
On the Fast Track: Hybrids Adapt More Rapidly Than Parental Populations in a Novel Environment
,”
Evol. Lett.
,
8
(
1
), pp.
128
136
.
5.
Kantaros
,
A.
,
Ganetsos
,
T.
, and
Petrescu
,
F. I. T.
,
2024
, “
Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way
,”
Biomimetics
,
9
(
1
), p.
48
.
6.
Zhang
,
Y.
,
Ding
,
J.
,
Qi
,
B.
,
Tao
,
W.
,
Wang
,
J.
,
Zhao
,
C.
,
Peng
,
H.
, and
Shi
,
J.
,
2019
, “
Multifunctional Fibers to Shape Future Biomedical Devices
,”
Adv. Funct. Mater.
,
29
(
34
), p.
1902834
.
7.
Liu
,
Z.
,
Hu
,
X. N.
,
Bo
,
R. H.
,
Yang
,
Y. Z.
,
Cheng
,
X.
,
Pang
,
W. B.
,
Liu
,
Q.
, et al.,
2024
, “
A Three-Dimensionally Architected Electronic Skin Mimicking Human Mechanosensation
,”
Science
,
384
(
6699
), pp.
987
994
.
8.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
, et al.,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
9.
Kirillova
,
A.
, and
Ionov
,
L.
,
2019
, “
Shape-Changing Polymers for Biomedical Applications
,”
J. Mater. Chem. B
,
7
(
10
), pp.
1597
1624
.
10.
Tawk
,
C.
, and
Alici
,
G.
,
2021
, “
A Review of 3D-Printable Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities
,”
Adv. Intell. Syst.
,
3
(
6
), p.
2000223
.
11.
Zhao
,
Z.
,
Kumar
,
J.
,
Hwang
,
Y.
,
Deng
,
J.
,
Ibrahim
,
M. S. B.
,
Huang
,
C.
,
Suresh
,
S.
, and
Cho
,
N.-J.
,
2021
, “
Digital Printing of Shape-Morphing Natural Materials
,”
Proc. Natl. Acad. Sci. USA
,
118
(
43
), p.
e2113715118
.
12.
Bai
,
Y.
,
Wang
,
H.
,
Xue
,
Y.
,
Pan
,
Y.
,
Kim
,
J.-T.
,
Ni
,
X.
,
Liu
,
T.-L.
, et al.,
2022
, “
A Dynamically Reprogrammable Surface With Self-Evolving Shape Morphing
,”
Nature
,
609
(
7928
), pp.
701
708
.
13.
Hannard
,
F.
,
Mirkhalaf
,
M.
,
Ameri
,
A.
, and
Barthelat
,
F.
,
2021
, “
Segmentations in Fins Enable Large Morphing Amplitudes Combined With High Flexural Stiffness for Fish-Inspired Robotic Materials
,”
Sci. Robot.
,
6
(
57
), p.
eabf9710
.
14.
Yokota
,
K.
, and
Barthelat
,
F.
,
2023
, “
Stiff Bioinspired Architectured Beams Bend Saint-Venant’s Principle and Generate Large Shape Morphing
,”
Int. J. Solids Struct.
,
274
, p.
112270
.
15.
Ze
,
Q.
,
Kuang
,
X.
,
Wu
,
S.
,
Wong
,
J.
,
Montgomery
,
S. M.
,
Zhang
,
R.
,
Kovitz
,
J. M.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Shape Memory Polymers: Magnetic Shape Memory Polymers With Integrated Multifunctional Shape Manipulation
,”
Adv. Mater.
,
32
(
4
), p.
2070025
.
16.
Shah
,
D.
,
Yang
,
B.
,
Kriegman
,
S.
,
Levin
,
M.
,
Bongard
,
J.
, and
Kramer-Bottiglio
,
R.
,
2021
, “
Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization
,”
Adv. Mater.
,
33
(
19
), p.
2002882
.
17.
Zhao
,
Q.
,
Zou
,
W.
,
Luo
,
Y.
, and
Xie
,
T.
,
2016
, “
Shape Memory Polymer Network With Thermally Distinct Elasticity and Plasticity
,”
Sci. Adv.
,
2
(
1
), p.
e1501297
.
18.
Van Meerbeek
,
I. M.
,
Mac Murray
,
B. C.
,
Kim
,
J. W.
,
Robinson
,
S. S.
,
Zou
,
P. X.
,
Silberstein
,
M. N.
, and
Shepherd
,
R. F.
,
2016
, “
Foams: Morphing Metal and Elastomer Bicontinuous Foams for Reversible Stiffness, Shape Memory, and Self-Healing Soft Machines
,”
Adv. Mater.
,
14
(
28
), pp.
2653
2653
.
19.
Guseinov
,
R.
,
Miguel
,
E.
, and
Bickel
,
B.
,
2017
, “
Curveups: Shaping Objects From Flat Plates With Tension-Actuated Curvature
,”
ACM Trans. Graph.
,
36
(
4
), pp.
64
1
.
20.
Chun
,
I. S.
,
Challa
,
A.
,
Derickson
,
B.
,
Hsia
,
K. J.
, and
Li
,
X.
,
2010
, “
Geometry Effect on the Strain-Induced Self-Rolling of Semiconductor Membranes
,”
Nano Lett.
,
10
(
10
), pp.
3927
3932
.
21.
Holmes
,
D. P.
,
2019
, “
Elasticity and Stability of Shape-Shifting Structures
,”
Curr. Opin. Colloid Interface Sci.
,
40
, pp.
118
137
.
22.
Grönquist
,
P.
,
Wood
,
D.
,
Hassani
,
M. M.
,
Wittel
,
F. K.
,
Menges
,
A.
, and
Rüggeberg
,
M.
,
2019
, “
Analysis of Hygroscopic Self-Shaping Wood at Large Scale for Curved Mass Timber Structures
,”
Sci. Adv.
,
5
(
9
), p.
eaax1311
.
23.
Chen
,
Y.
,
Tan
,
M.
,
Yang
,
R. l.
,
Lee
,
C. K. W.
,
Zhong
,
H. S.
,
Xu
,
Y.
,
Huang
,
Y. Y.
,
Tang
,
M.
, and
Li
,
M. G.
,
2024
, “
Laser-Guided Self-Assembly of Thin Films Into Micro-Rolls
,”
Adv. Funct. Mater.
,
34
(
19
), pp.
1
11
.
24.
Mohammadi
,
H.
, and
Shojaee
,
M.
,
2024
, “
Application of Isogeometric Method for Shear Buckling Study of Graded Porous Nanocomposite Folded Plates
,”
Arch. Appl. Mech.
,
94
(
2
), pp.
315
331
.
25.
Cheng
,
X.
, and
Zhang
,
Y.
,
2019
, “
Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches
,”
Adv. Mater.
,
31
(
36
), p.
1901895
.
26.
Jin
,
T.
,
Cheng
,
X.
,
Xu
,
S.
,
Lai
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Deep Learning Aided Inverse Design of the Buckling-Guided Assembly for 3D Frame Structures
,”
J. Mech. Phys. Solids
,
179
, p.
105398
.
27.
Xu
,
Z.
,
Fan
,
Z.
,
Fu
,
H.
,
Liu
,
Y.
,
Zi
,
Y.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2019
, “
Optimization-Based Approach for the Inverse Design of Ribbon-Shaped Three-Dimensional Structures Assembled Through Compressive Buckling
,”
Phys. Rev. Appl.
,
11
(
5
), p.
054053
.
28.
Meng
,
Z.
,
Chen
,
W.
,
Mei
,
T.
,
Lai
,
Y.
,
Li
,
Y.
, and
Chen
,
C.
,
2021
, “
Bistability-Based Foldable Origami Mechanical Logic Gates
,”
Extreme Mech. Lett.
,
43
, p.
101180
.
29.
Liu
,
Y.
,
Pan
,
F.
,
Ding
,
B.
,
Zhu
,
Y.
,
Yang
,
K.
, and
Chen
,
Y.
,
2022
, “
Multistable Shape-Reconfigurable Metawire in 3D Space
,”
Extreme Mech. Lett.
,
50
, p.
101535
.
30.
Yan
,
P.
,
Huang
,
H.
,
Meloni
,
M.
,
Li
,
B.
, and
Cai
,
J.
,
2024
, “
Mechanical Properties Inside Origami-Inspired Structures: An Overview
,”
ASME Appl. Mech. Rev.
,
77
(
1
), p.
011001
.
31.
Ning
,
X.
,
Wang
,
X.
,
Zhang
,
Y.
,
Yu
,
X.
,
Choi
,
D.
,
Zheng
,
N.
,
Kim
,
D. S.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2018
, “
Assembly of Advanced Materials Into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review
,”
Adv. Mater. Interface
,
5
(
13
), p.
1800284
.
32.
Dey
,
S.
,
Fan
,
C.
,
Gothelf
,
K. V.
,
Li
,
J.
,
Lin
,
C.
,
Liu
,
L.
,
Liu
,
N.
, et al.,
2021
, “
DNA Origami
,”
Nat. Rev. Methods Primers
,
1
(
1
), p.
13
.
33.
Chen
,
Y.
,
Xu
,
R. Z.
,
Lu
,
C. H.
,
Liu
,
K.
,
Feng
,
J.
, and
Pooya
,
S.
,
2023
, “
Multi-stability of the Hexagonal Origami Hypar Based on Group Theory and Symmetry Breaking
,”
Int. J. Mech. Sci.
,
247
(
6
), p.
108196
.
34.
Huang
,
J. Z.
,
Lin
,
J.
,
Huang
,
L. W.
,
Liu
,
Y. J.
,
Xiang
,
X. M.
, and
Liang
,
Y. J.
,
2025
, “
Quasi-Static Mechanical Behaviors of Arc Curved Crease Origami Metamaterials
,”
Int. J. Mech. Sci.
,
287
(
1
), p.
109939
.
35.
Lewandowska
,
U.
,
Zajaczkowski
,
W.
,
Corra
,
S.
,
Tanabe
,
J.
,
Borrmann
,
R.
,
Benetti
,
E. M.
,
Stappert
,
S.
, et al.,
2017
, “
A Triaxial Supramolecular Weave
,”
Nat. Chem.
,
9
(
11
), pp.
1068
10725
.
36.
Khokar
,
N.
,
2001
, “
3D-Weaving: Theory and Practice
,”
J. Text. Inst.
,
92
(
2
), pp.
193
207
.
37.
Gandhi
,
K. L.
,
2020
,
The Fundamentals of Weaving Technology
, Woven Textiles, 2nd. ed.,
Woodhead Publishing
,
Cambridge, UK
, pp.
167
270
.
38.
Zhang
,
Y.
,
Tichem
,
M.
, and
van Keulen
,
F.
,
2022
, “
Concept and Design of a Metastructure-Based Multi-stable Surface
,”
Extreme Mech. Lett.
,
51
, p.
101553
.
39.
Xiao
,
K.
,
Liang
,
Z.
,
Zou
,
B.
,
Zhou
,
X.
, and
Ju
,
J.
,
2022
, “
Inverse Design of 3D Reconfigurable Curvilinear Modular Origami Structures Using Geometric and Topological Reconstructions
,”
Nat. Commun.
,
13
(
1
), p.
7474
.
40.
Wang
,
Z.
,
Song
,
P.
,
Isvoranu
,
F.
, and
Pauly
,
M.
,
2019
, “
Design and Structural Optimization of Topological Interlocking Assemblies
,”
ACM Trans. Graph. (TOG)
,
38
(
6
), pp.
1
13
.
41.
Glaesener
,
R.
,
Kumar
,
S.
,
Lestringant
,
C.
,
Butruille
,
T.
,
Portela
,
C. P.
, and
Kochmann
,
D.
,
2023
, “
Predicting the Influence of Geometric Imperfections on the Mechanical Response of 2D and 3D Periodic Trusses
,”
Acta Mater.
,
254
, p.
118918
.
42.
Akleman
,
E.
,
Chen
,
J.
,
Xing
,
Q.
, and
Gross
,
J. L.
,
2009
, “
Cyclic Plain-Weaving on Polygonal Mesh Surfaces With Graph Rotation Systems
,”
ACM Trans. Graph. (TOG)
,
28
(
3
), pp.
1
8
.
43.
Ayres
,
P.
,
Martin
,
A. G.
, and
Zwierzycki
,
M.
,
2018
,
Beyond the Basket Case: A Principled Approach to the Modelling of Kagome Weave Patterns for the Fabrication of Interlaced Lattice Structures Using Straight Strips
,
Chalmers University of Technology
,
Gothenburg, Sweden
, pp.
72
93
.
44.
Baek
,
C.
,
Martin
,
A. G.
,
Poincloux
,
S.
,
Chen
,
T.
, and
Reis
,
P. M.
,
2021
, “
Smooth Triaxial Weaving With Naturally Curved Ribbons
,”
Phys. Rev. Lett.
,
127
(
10
), p.
104301
.
45.
Ren
,
Y. Y.
,
Panetta
,
J. L.
,
Chen
,
T.
,
Isvoranu
,
F.
,
Poincloux
,
S.
,
Brandt
,
C.
,
Martin
,
A.
, and
Pauly
,
M.
,
2021
, “
3D Weaving With Curved Ribbons
,”
ACM Trans. Graph.
,
40
(
4
), p.
127
.
46.
Zareei
,
A.
,
Deng
,
B.
, and
Bertoldi
,
K.
,
2020
, “
Harnessing Transition Waves to Realize Deployable Structures
,”
Proc. Natl. Acad. Sci. USA
,
117
(
8
), pp.
4015
4020
.
47.
Jin
,
R. Y.
,
Qiu
,
H. F.
,
Weng
,
L. G.
,
Yu
,
B.
,
Chen
,
J.
, and
Zhang
,
Y. H.
,
2024
, “
Electro-Mechanical Buckling of Shallow Segments of Functionally Graded Porous Toroidal Shell Covered by Piezoelectric Actuators
,”
Int. J. Struct. Stab. Dyn.
,
24
(
15
), pp.
129
144
.
48.
De Gennaro
,
D.
,
Diana
,
A.
,
Kubin
,
A.
, and
Kubin
,
A.
,
2024
, “
Stability of the Surface Diffusion Flow and Volume-Preserving Mean Curvature Flow in the Flat Torus
,”
Math. Ann.
,
390
(
3
), pp.
4429
4461
.
49.
Zhang
,
R.
,
2024
, “
Effects of Circumferential Weld-Induced Imperfections on the Buckling Behavior of Fabricated Steel Toroidal Shells
,”
Nucl. Eng. Des.
,
418
, p.
112913
.
50.
Paleti
,
M. K.
,
Prakash
,
S. S.
, and
Narayanamurthy
,
V.
,
2024
, “
A Shell Theory Approach for the Analysis of Metal-FRP Hybrid Toroidal Pressure Vessels
,”
Thin-Walled Struct.
,
204
, p.
112266
.
51.
Jiammeepreecha
,
W.
, and
Chucheepsakul
,
S.
,
2017
, “
Nonlinear Static Analysis of an Underwater Elastic Semi-Toroidal Shell
,”
Thin-Walled Struct.
,
116
, pp.
12
18
.
52.
Wissler
,
H.
,
1916
,
Festigkeiberechung vonringsflä‌chen
,
ETH Zurich
,
Zurich
.
53.
Sun
,
B. H.
,
2016
, “
Exact Solution of Qian’s Equation of Slender Toroidal Shells
,”
Mech. Eng.
,
38
(
5
), pp.
567
569
. doi:10.6052/1000-0879-15-262
54.
Qian
,
W.
, and
Liang
,
S.
,
1979
, “
Complex Form Equation and Asymptotic Solution
,”
J. Tsinghua Univ.
,
19
(
1
), pp.
27
47
.
55.
Tao
,
L.
,
1959
, “
On Toroidal Shells
,”
J. Math. Phys.
,
38
, pp.
130
134
.
56.
Luts’Ka
,
I. V.
,
Maksimyuk
,
V. A.
, and
Chernyshenko
,
I. S.
,
2023
, “
Physically Nonlinear Deformation of an Orthotropic Semi-Elliptical Toroidal Shell
,”
Int. Appl. Mech.
,
59
(
4
), pp.
410
416
.
57.
Steele
,
C.
,
1965
, “
Toroidal Pressure Vessels
,”
J. Spacecr. Rockets
,
2
(
6
), pp.
937
943
.
58.
Kutsenko
,
G.
,
1979
, “
Axisymmetric Deformation of a Circular Torus
,”
Sov. Appl. Mech.
,
15
(
11
), pp.
1049
1053
.
59.
Zingoni
,
A.
,
Enoma
,
N.
, and
Govender
,
N.
,
2015
, “
Equatorial Bending of an Elliptic Toroidal Shell
,”
Thin-Walled Struct.
,
96
, pp.
286
294
.
60.
Sutcliffe
,
W.
,
1971
, “
Stress Analysis of Toroidal Shells of Elliptical Cross-Section
,”
Int. J. Mech. Sci.
,
13
(
11
), pp.
951
958
.
61.
Dai
,
L. M.
, and
Foroutan
,
K.
,
2023
, “
Nonlinear Stability and Vibration Analyses of Functionally Graded Variable Thickness Toroidal Shell Segments Reinforced With Spiral Stiffeners
,”
Int. J. Appl. Mech.
,
15
(
08
), p.
2350061
.
62.
Enoma
,
N.
, and
Zingoni
,
A.
,
2020
, “
Analytical Formulation and Numerical Modelling for Multi-shell Toroidal Pressure Vessels
,”
Comput. Struct.
,
232
, p.
105811
.
63.
Kamran
,
F.
, and
Dai
,
L.
,
2024
, “
Nonlinear Dynamic Response and Vibration of Spiral Stiffened Fg Toroidal Shell Segments With Variable Thickness
,”
Mech. Based Des. Struct. Mach.
,
52
(
8
), pp.
4930
4952
.
64.
Ashwin
,
G.
,
Arunjyoti
,
S.
, and
Ritwik
,
G.
,
2024
, “
Torus Hull Articulated Tower for Offshore Wind Turbines
,”
Ocean Eng.
,
308
, p.
118291
.
65.
Sun
,
B. H.
,
2022
, “
Nonlinear Elastic Deformation of Mindlin Torus
,”
Commun. Nonlinear Sci. Numer. Simul.
,
114
, p.
106698
.
66.
Sun
,
B. H.
,
2021
, “
Small Symmetrical Deformation of Thin Torus With Circular Cross-section
,”
Thin-Walled Struct.
,
163
, p.
107680
.
67.
Sun
,
B. H.
, and
Song
,
G. K.
,
2023
, “
The Mechanics Difference Between the Outer Torus and Inner Torus
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071012
.
68.
Guo
,
X. L.
, and
Sun
,
B. H.
,
2024
, “
Mechanics of a Thin-Walled Segmented Torus Snap Fit
,”
Thin-Walled Struct.
,
198
, p.
111676
.
69.
Błachut
,
J.
, and
Jaiswal
,
O.
,
2000
, “
On Buckling of Toroidal Shells Under External Pressure
,”
Comput. Struct.
,
77
(
3
), pp.
233
251
.
70.
Oyesanya
,
M.
,
2005
, “
Influence of Extra Terms on Asymptotic Analysis of Imperfection Sensitivity of Toroidal Shell Segment With Random Imperfection
,”
Mech. Res. Commun.
,
32
(
4
), pp.
444
453
.
71.
Wang
,
X.
,
Xu
,
B.
, and
Redekop
,
D.
,
2006
, “
FEM Free Vibration and Buckling Analysis of Stiffened Toroidal Shells
,”
Thin-Walled Struct.
,
44
(
1
), pp.
2
9
.
72.
Zhan
,
H.
, and
Redekop
,
D.
,
2008
, “
Vibration, Buckling and Collapse of Ovaloid Toroidal Tanks
,”
Thin-Walled Struct.
,
46
(
4
), pp.
380
389
.
73.
Blachut
,
J.
,
2010
, “
Buckling of Compound Spherical-Toroidal Shells Under External Pressure
,”
Earth Space
, pp.
408
422
.
74.
Błachut
,
J
,
2014
, “
Experimental Perspective on the Buckling of Pressure Vessel Components
,”
ASME Appl. Mech. Rev.
,
66
(
1
), p.
010803
.
75.
Ninh
,
D. G.
,
Bich
,
D. H.
, and
Kien
,
B. H.
,
2015
, “
Torsional Buckling and Post-Buckling Behavior of Eccentrically Stiffened Functionally Graded Toroidal Shell Segments Surrounded by an Elastic Medium
,”
Acta Mech.
,
226
(
10
), pp.
3501
3519
.
76.
Naghdi
,
P. M.
,
1957
, “
On the Theory of Thin Elastic Shells
,”
Q. Appl. Math.
,
14
(
4
), pp.
369
380
.
77.
Audoly
,
B.
, and
Pomeau
,
Y.
,
2002
, “
The Elastic Torus: Anomalous Stiffness of Shells With Mixed Type
,”
C. R. Méc.
,
330
(
6
), pp.
425
432
.
78.
Sun
,
B. H.
,
2022
, “
Gol’denveizer’s Problem of Elastic Torus
,”
Thin-Walled Struct.
,
171
, p.
108718
.
79.
Audoly
,
B.
, and
Pomeau
,
Y.
,
2008
,
Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells
,
Oxford University Press
,
Oxfordshire, UK
.
80.
Song
,
G. K.
, and
Sun
,
B. H.
,
2022
, “
Nonlinear Investigation of Gol’denveizer’s Problem of a Circular and Elliptic Elastic Torus
,”
Thin-Walled Struct.
,
180
, p.
109862
.
81.
Song
,
G. K.
, and
Sun
,
B. H.
,
2023
, “
Buckling of Spherical Grid-Shells Made of Smooth Triaxial Weaving With Naturally In-Plane Curved Ribbons
,”
Int. J. Struct. Stab. Dyn.
,
24
, p.
2450048
.
82.
Song
,
G. k.
, and
Sun
,
B. H.
,
2023
, “
Buckling of Ellipsoid Grid-Shells Made of Smooth Triaxial Weaving With Naturally In-Plane Curved Ribbons
,”
Thin-Walled Struct.
,
191
, p.
111060
.
You do not currently have access to this content.