Abstract

Ascending thoracic aortic aneurysms (ATAAs) are at high risk of developing aortic dissection, particularly near the ostia of arterial bifurcations or branches. These geometric discontinuities are regions where blood pressure-induced stress rises locally, creating stress concentrations. This study aimed to quantify the stress concentration factor in ATAA tissues by combining experimental biaxial testing with computational stress predictions. Conventional biaxial testing was modified by introducing a through-the-thickness circular hole in the tissue samples, mimicking the branch ostia that creates a “hole” in the artery. The stress–strain response of plain and hole-based specimens was analyzed under biaxial loading, and experimental data were used to develop a finite element model for predicting the stress field. Digital image correlation (DIC) was employed on hole-based samples to compare strain estimates with numerical predictions. Stress–strain curves exhibited hyperelastic behavior with a loss of material directional dependency in both plain and hole-based specimens. Both DIC and simulations confirmed a localized increase in the strain field near the hole. Stress concentration factors were 1.91 ± 0.31 for a hole diameter of 1.5 mm and 1.84 ± 0.25 for a diameter of 3 mm. These findings enhance our understanding of the biomechanics of aortic dissection and may contribute to the development of fracture mechanics criteria for the early diagnosis of ATAA at high risk of failure.

References

1.
Elefteriades
,
J. A.
, and
Farkas
,
E. A.
,
2010
, “
Thoracic Aortic Aneurysm Clinically Pertinent Controversies and Uncertainties
,”
J. Am. Coll. Cardiol.
,
55
(
9
), pp.
841
857
.
2.
Olsson
,
C.
,
Thelin
,
S.
,
Ståhle
,
E.
,
Ekbom
,
A.
, and
Granath
,
F.
,
2006
, “
Thoracic Aortic Aneurysm and Dissection—Increasing Prevalence and Improved Outcomes Reported in a Nationwide Population-Based Study of More Than 14000 Cases From 1987 to 2002
,”
Circulation
,
114
(
24
), pp.
2611
2618
.
3.
Elefteriades
,
J. A.
,
2008
, “
Thoracic Aortic Aneurysm: Reading the Enemy’s Playbook
,”
Curr. Probl. Cardiol.
,
33
(
5
), pp.
203
277
.
4.
Pape
,
L. A.
,
Tsai
,
T. T.
,
Isselbacher
,
E. M.
,
Oh
,
J. K.
,
O'Gara
,
P. T.
,
Evangelista
,
A.
,
Fattori
,
R.
, et al
,
2007
, “
Aortic Diameter ≥5.5 cm Is Not a Good Predictor of Type A Aortic Dissection—Observations From the International Registry of Acute Aortic Dissection (IRAD)
,”
Circulation
,
116
(
10
), pp.
1120
1127
.
5.
Nathan
,
D. P.
,
Xu
,
C.
,
Gorman
,
J. H. III
,
Fairman
,
R. M.
,
Bavaria
,
J. E.
,
Gorman
,
R. C.
,
Chandran
,
K. B.
, and
Jackson
,
B. M.
,
2011
, “
Pathogenesis of Acute Aortic Dissection: A Finite Element Stress Analysis
,”
Ann. Thorac. Surg.
,
91
(
2
), pp.
458
463
.
6.
D'Ancona
,
G.
,
Amaducci
,
A.
,
Rinaudo
,
A.
,
Pasta
,
S.
,
Follis
,
F.
,
Pilato
,
M.
, and
Baglini
,
R.
,
2013
, “
Haemodynamic Predictors of a Penetrating Atherosclerotic Ulcer Rupture Using Fluid-Structure Interaction Analysis
,”
Interact. Cardiovasc. Thorac. Surg.
,
17
(
3
), pp.
576
578
.
7.
Beller
,
C. J.
,
Labrosse
,
M. R.
,
Thubrikar
,
M. J.
, and
Robicsek
,
F.
,
2004
, “
Role of Aortic Root Motion in the Pathogenesis of Aortic Dissection
,”
Circulation
,
109
(
6
), pp.
763
769
.
8.
Surman
,
T. L.
,
Abrahams
,
J. M.
,
Manavis
,
J.
,
Finnie
,
J.
,
O’Rourke
,
D.
,
Reynolds
,
K. J.
,
Edwards
,
J.
,
Worthington
,
M. G.
, and
Beltrame
,
J.
,
2021
, “
Histological Regional Analysis of the Aortic Root and Thoracic Ascending Aorta: A Complete Analysis of Aneurysms From Root to Arch
,”
J. Cardiothor. Surg.
,
16
(
1
), p.
255
.
9.
Pasta
,
S.
,
Catalano
,
C.
,
Crascì
,
F.
, and
Scuoppo
,
R.
,
2023
, “
A Custom-Built Planar Biaxial System for Soft Tissue Material Testing
,”
Hardwarex
,
16
(
12
), p.
e00475
.
10.
Pasta
,
S.
,
Phillippi
,
J. A.
,
Tsamis
,
A.
,
D'Amore
,
A.
,
Raffa
,
G. M.
,
Pilato
,
M.
,
Scardulla
,
C.
, et al
,
2016
, “
Constitutive Modeling of Ascending Thoracic Aortic Aneurysms Using Microstructural Parameters
,”
Med. Eng. Phys.
,
38
(
2
), pp.
121
130
.
11.
Di Giuseppe
,
M.
,
Alotta
,
G.
,
Agnese
,
V.
,
Bellavia
,
D.
,
Raffa
,
G. M.
,
Vetri
,
V.
,
Zingales
,
M.
,
Pasta
,
S.
, and
Pilato
,
M.
,
2019
, “
Identification of Circumferential Regional Heterogeneity of Ascending Thoracic Aneurysmal Aorta by Biaxial Mechanical Testing
,”
J. Mol. Cell Cardiol.
,
130
, pp.
205
215
.
12.
Cosentino
,
F.
,
Raffa
,
G. M.
,
Gentile
,
G.
,
Agnese
,
V.
,
Bellavia
,
D.
,
Pilato
,
M.
, and
Pasta
,
S.
,
2020
, “
Statistical Shape Analysis of Ascending Thoracic Aortic Aneurysm: Correlation Between Shape and Biomechanical Descriptors
,”
J. Person. Med.
,
10
(
2
), p.
28
.
13.
Blaber
,
J.
,
Adair
,
B.
, and
Antoniou
,
A.
,
2015
, “
Ncorr: Open-Source 2D Digital Image Correlation Matlab Software
,”
Exp. Mech.
,
55
(
6
), pp.
1105
1122
.
14.
Chung
,
J.
,
Lachapelle
,
K.
,
Cartier
,
R.
,
Mongrain
,
R.
, and
Leask
,
R. L.
,
2017
, “
Loss of Mechanical Directional Dependency of the Ascending Aorta With Severe Medial Degeneration
,”
Cardiovasc. Pathol.
,
26
(
1
), pp.
45
50
.
15.
Shahmansouri
,
N.
,
Alreshidan
,
M.
,
Emmott
,
A.
,
Lachapelle
,
K.
,
El-Hamamsy
,
I.
,
Cartier
,
R.
,
Leask
,
R. L.
, and
Mongrain
,
R.
,
2016
, “
Investigation on the Regional Loss Factor and Its Anisotropy for Aortic Aneurysms
,”
Materials
,
9
(
11
),
867
.
16.
Yang
,
J.
, and
Bhattacharya
,
K.
,
2021
, “
Fast Adaptive Mesh Augmented Lagrangian Digital Image Correlation
,”
Exp. Mech.
,
61
(
4
), pp.
719
735
.
17.
Estrada
,
J. B.
, and
Franck
,
C.
,
2015
, “
Intuitive Interface for the Quantitative Evaluation of Speckle Patterns for Use in Digital Image and Volume Correlation Techniques
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
095001
.
18.
Thubrikar
,
M. J.
,
Baker
,
J. W.
, and
Nolan
,
S. P.
,
1988
, “
Inhibition of Atherosclerosis Associated With Reduction of Arterial Intramural Stress in Rabbits
,”
Arteriosclerosis
,
8
(
4
), pp.
410
420
.
19.
Thubrikar
,
M. J.
, and
Robicsek
,
F.
,
1995
, “
Pressure-Induced Arterial Wall Stress and Atherosclerosis
,”
Ann. Thorac. Surg.
,
59
(
6
), pp.
1594
1603
.
20.
Thubrikar
,
M. J.
,
Roskelley
,
S. K.
, and
Eppink
,
R. T.
,
1990
, “
Study of Stress Concentration in the Walls of the Bovine Coronary Arterial Branch
,”
J. Biomech.
,
23
(
1
), pp.
15
26
.
21.
Thubrikar
,
M. J.
,
Agali
,
P.
, and
Robicsek
,
F.
,
1999
, “
Wall Stress as a Possible Mechanism for the Development of Transverse Intimal Tears in Aortic Dissections
,”
J. Med. Eng. Technol.
,
23
(
3
), pp.
127
134
.
22.
Rajagopal
,
K.
,
Bridges
,
C.
, and
Rajagopal
,
K. R.
,
2007
, “
Towards an Understanding of the Mechanics Underlying Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
6
(
5
), pp.
345
359
.
23.
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Muluk
,
S. C.
,
Makaroun
,
M. S.
,
Steed
,
D. L.
,
Shapiro
,
R.
, and
Webster
,
M. W.
,
1996
, “
Wall Strength and Stiffness of Aneurysmal and Nonaneurysmal Abdominal Aorta
,”
Ann. N Y Acad. Sci.
,
800
, pp.
274
276
.
24.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Lampropoulos
,
K. M.
,
Papadodima
,
S. A.
, and
Iliopoulos
,
D. C.
,
2012
, “
Biomechanical Response of Ascending Thoracic Aortic Aneurysms: Association With Structural Remodelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
3
), pp.
231
248
.
25.
Pichamuthu
,
J. E.
,
Phillippi
,
J. A.
,
Cleary
,
D. A.
,
Chew
,
D. W.
,
Hempel
,
J.
,
Vorp
,
D. A.
, and
Gleason
,
T. G.
,
2013
, “
Differential Tensile Strength and Collagen Composition in Ascending Aortic Aneurysms by Aortic Valve Phenotype
,”
Ann. Thorac. Surg.
,
96
(
6
), pp.
2147
2154
.
26.
Cosentino
,
F.
,
Sherifova
,
S.
,
Sommer
,
G.
,
Raffa
,
G.
,
Pilato
,
M.
,
Pasta
,
S.
, and
Holzapfel
,
G. A.
,
2023
, “
Regional Biomechanical Characterization of Human Ascending Aortic Aneurysms: Microstructure and Biaxial Mechanical Response
,”
Acta Biomater.
,
169
, pp.
107
117
.
27.
Azadani
,
A. N.
,
Chitsaz
,
S.
,
Mannion
,
A.
,
Mookhoek
,
A.
,
Wisneski
,
A.
,
Guccione
,
J. M.
,
Hope
,
M. D.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2013
, “
Biomechanical Properties of Human Ascending Thoracic Aortic Aneurysms
,”
Ann. Thorac. Surg.
,
96
(
1
), pp.
50
58
.
28.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.
29.
Martin
,
C.
,
Sun
,
W.
,
Pham
,
T.
, and
Elefteriades
,
J.
,
2013
, “
Predictive Biomechanical Analysis of Ascending Aortic Aneurysm Rupture Potential
,”
Acta Biomater.
,
9
(
12
), pp.
9392
9400
.
30.
Korenczuk
,
C. E.
,
Votava
,
L. E.
,
Dhume
,
R. Y.
,
Kizilski
,
S. B.
,
Brown
,
G. E.
,
Narain
,
R.
, and
Barocas
,
V. H.
,
2017
, “
Isotropic Failure Criteria Are Not Appropriate for Anisotropic Fibrous Biological Tissues
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071008
.
31.
Shah
,
S. B.
,
Witzenburg
,
C.
,
Hadi
,
M. F.
,
Wagner
,
H. P.
,
Goodrich
,
J. M.
,
Alford
,
P. W.
, and
Barocas
,
V. H.
,
2014
, “
Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021028
.
32.
Alloisio
,
M.
,
Chatziefraimidou
,
M.
,
Roy
,
J.
, and
Christian Gasser
,
T.
,
2023
, “
Fracture of Porcine Aorta-Part 1: SymconCT Fracture Testing and DIC
,”
Acta Biomater.
,
167
, pp.
147
157
.
You do not currently have access to this content.