Abstract

This article introduces a fail-safe topology optimization method for structural design under dynamic loads. Fail-safe topology optimization strategically embeds redundancy within efficiency-driven structures, preventing catastrophic failure through alternative load paths. However, this typically involves massive failure scenarios, where each scenario involves a finite element analysis, thus making the topology optimization process time-consuming. On the other hand, structures are often subjected to dynamic loads. When conducting fail-safe topology optimization considering load variation in time span, the computational burden will be even prohibitively intensive due to the increasing transient analysis by orders in the two-dimensional space of failure scenario and time span. To address this, this article employs an equivalent static load method to convert dynamic loads into equivalent static loads which are applied to the fail-safe topology optimization design, showing a 62% decrease in the computational time, which is a significant improvement in efficiency compared with traditional methods. Three numerical examples are investigated to demonstrate the efficiency and effectiveness of the proposed method, showing that optimized structures exhibit enhanced resistance to stiffness loss when partial failures occur. Additionally, the study demonstrates that the size of the partial damage patch chosen at the design stage influences the optimization results. Structures perform more effectively when the actual damage closely matches the size and characteristics of the damage used in the design. The developed design algorithm provides an efficient tool for optimizing structures to withstand dynamic loads with the influences of potential partial failure considered.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Meth. Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Opt.
,
1
(
4
), pp.
193
202
.
3.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
4.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
192
(
1
), pp.
227
246
.
5.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
6.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
7.
Zheng
,
Y.
,
Fu
,
Z.
,
Wang
,
Y.
,
Lu
,
X.
,
Qu
,
J.
, and
Zhang
,
C.
,
2022
, “
Hierarchical Design of Material Microstructures With Thermal Insulation Properties
,”
Int. J. Heat Mass Transf.
,
186
, p.
122514
.
8.
Liu
,
J.
,
Fan
,
H.
,
Nie
,
T.
,
Zhang
,
H.
,
Yu
,
J.
,
Wang
,
S.
, and
Xia
,
Z.
,
2025
, “
Multi-Objective Concurrent Isogeometric Topology Optimization of Multiscale Structures
,”
Front. Mech. Eng.
,
20
(
1
), pp.
1
23
.
9.
Sun
,
P. F.
,
Arora
,
J.
, and
Haug
,
E. J.
,
1976
, “
Fail-Safe Optimal Design of Structures.
,”
Eng. Optim.
,
2
(
1
), pp.
43
53
.
10.
Jansen
,
M.
,
Lombaert
,
G.
,
Schevenels
,
M.
, and
Sigmund
,
O.
,
2014
, “
Topology Optimization of Fail-Safe Structures Using a Simplified Local Damage Model
,”
Struct. Multidiscip. Optim.
,
49
(
4
), pp.
657
666
.
11.
Zhou
,
M.
, and
Fleury
,
R.
,
2016
, “
Fail-Safe Topology Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1225
1243
.
12.
Ambrozkiewicz
,
O.
, and
Kriegesmann
,
B.
,
2020
, “
Density-Based Shape Optimization for Fail-Safe Design
,”
J. Comput. Des. Eng.
,
7
(
5
), pp.
615
629
.
13.
Hederberg
,
H.
, and
Thore
,
C.
,
2021
, “
Topology Optimization for Fail-Safe Designs Using Moving Morphable Components as a Representation of Damage
,”
Struct. Multidiscip. Optim.
,
64
(
4
), pp.
2307
2321
.
14.
Wang
,
H.
,
Liu
,
J.
,
Wen
,
G.
, and
Xie
,
Y. M.
,
2020
, “
The Robust Fail-Safe Topological Designs Based on the von Mises Stress
,”
Finite Elem. Anal. Des.
,
171
, p.
103376
.
15.
Yang
,
J.
,
Su
,
H.
,
Li
,
X.
, and
Wang
,
Y.
,
2023
, “
Fail-Safe Topology Optimization for Multiscale Structures
,”
Comput. Struct.
,
284
, p.
107069
.
16.
Wang
,
Y.
,
Guo
,
Z.
,
Yang
,
J.
, and
Li
,
X.
,
2023
, “
Multiresolution and Multimaterial Topology Optimization of Fail-Safe Structures Under B-Spline Spaces
,”
Front. Mech. Eng.
,
18
(
4
), p.
52
.
17.
Huang
,
H.
,
Ding
,
W.
,
Jia
,
H.
,
Zuo
,
W.
, and
Cheng
,
F.
,
2025
, “
Multiscale Fail-Safe Topology Optimization for Lattice Structures
,”
Thin-Walled Struct.
,
206
, p.
112693
.
18.
Da Silva
,
G. A.
, and
Emmendoerfer
,
H.
,
2024
, “
Fail-Safe Stress-Constrained Manufacturing Error Tolerant Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
421
, p.
116817
.
19.
Min
,
S.
,
Kikuchi
,
N.
,
Park
,
Y. C.
,
Kim
,
S.
, and
Chang
,
S.
,
1999
, “
Optimal Topology Design of Structures Under Dynamic Loads
,”
Structu. Optim.
,
17
(
2
), pp.
208
218
.
20.
Nelson
,
M. F.
, and
Wolf
,
J. A.
,
1977
, “
The Use of Inertia Relief to Estimate Impact Loads
,”
SAE Trans.
,
86
, pp.
2237
2243
.
21.
Pedersen
,
C. B. W.
,
2004
, “
Crashworthiness Design of Transient Frame Structures Using Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
193
(
6–8
), pp.
653
678
.
22.
Pedersen
,
C. B. W.
,
2003
, “
Topology Optimization Design of Crushed 2D-Frames for Desired Energy Absorption History
,”
Struct. Multidiscip. Optim.
,
25
(
5
), pp.
368
382
.
23.
Patel
,
N. M.
,
Kang
,
B.
,
Renaud
,
J. E.
, and
Tovar
,
A.
,
2009
, “
Crashworthiness Design Using Topology Optimization
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061013
.
24.
Choi
,
W. S.
, and
Park
,
G. J.
,
1999
, “
Transformation of Dynamic Loads Into Equivalent Static Loads Based on Modal Analysis
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
29
43
.
25.
Choi
,
W. S.
, and
Park
,
G. J.
,
2002
, “
Structural Optimization Using Equivalent Static Loads at all Time Intervals
,”
Comput. Meth. Appl. Mech. Eng.
,
191
(
19
), pp.
2105
2122
.
26.
Kang
,
B. S.
,
Choi
,
W. S.
, and
Park
,
G. J.
,
2001
, “
Structural Optimization Under Equivalent Static Loads Transformed From Dynamic Loads Based on Displacement
,”
Comput. Struct.
,
79
(
2
), pp.
145
154
.
27.
Shin
,
M.
,
Park
,
K.
, and
Park
,
G.
,
2007
, “
Optimization of Structures With Nonlinear Behavior Using Equivalent Loads
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
4
), pp.
1154
1167
.
28.
Lee
,
H.
, and
Park
,
G.
,
2015
, “
Nonlinear Dynamic Response Topology Optimization Using the Equivalent Static Loads Method
,”
Comput. Meth. Appl. Mech. Eng.
,
283
, pp.
956
970
.
29.
Choi
,
Y.
,
Moon
,
J.
,
Park
,
J.
,
Song
,
S.
,
Dai
,
M. D.
,
Kim
,
K.
,
Ma
,
S. J.
, and
Kim
,
C. W.
,
2021
, “
Optimization of Laminated Composite Structures Under Nonlinear Dynamic Loading Using the Equivalent Static Load Method
,”
J. Mech. Sci. Technol.
,
35
(
9
), pp.
4105
4113
.
30.
Karev
,
A.
,
Harzheim
,
L.
,
Immel
,
R.
, and
Erzgräber
,
M.
,
2019
, “
Free Sizing Optimization of a Front Hood Using the ESL Method: Overcoming Challenges and Traps
,”
Struct. Multidiscip. Optim.
,
60
(
4
), pp.
1687
1707
.
31.
Triller
,
J.
,
Immel
,
R.
,
Timmer
,
A.
, and
Harzheim
,
L.
,
2021
, “
The Difference-Based Equivalent Static Load Method: An Improvement of the ESL Method’s Nonlinear Approximation Quality
,”
Struct. Multidiscip. Optim.
,
63
(
6
), pp.
2705
2720
.
32.
Jeong
,
M.
,
Park
,
S.
, and
Park
,
G.
,
2023
, “
Multi-Model Optimization for Various Disciplines Using the Equivalent Static Loads Method
,”
Struct. Multidiscip. Optim.
,
66
(
3
), p.
56
.
33.
Cao
,
D.
,
Zeng
,
Y.
,
Meng
,
Z.
, and
Li
,
G.
,
2025
, “
A Transient Dynamic Topology Optimization Method With Approximate Dynamic Response Sensitivity Using Equivalent Static Loads
,”
Comput. Meth. Appl. Mech. Eng.
,
436
, p.
117760
.
34.
Kreisselmeier
,
G.
, and
Steinhauser
,
R.
,
1983
, “
Application of Vector Performance Optimization to a Robust Control Loop Design for a Fighter Aircraft
,”
Int. J. Control
,
37
(
2
), pp.
251
284
.
35.
Martins
,
J.
, and
Poon
,
N.
,
2005
, “
On Structural Optimization Using Constraint Aggregation
,”
6th World Congress on Structural and Multidisciplinary Optimization
,
Rio de Janeiro, Brazil
,
May 30–June 3
.
36.
Arnout
,
S.
,
Firl
,
M.
, and
Bletzinger
,
K.
,
2012
, “
Parameter Free Shape and Thickness Optimisation Considering Stress Response
,”
Struct. Multidiscip. Optim.
,
45
(
6
), pp.
801
814
.
37.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
401
424
.
38.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
6
), pp.
767
784
.
39.
Qiu
,
W.
,
Wang
,
Q.
,
Gao
,
L.
, and
Xia
,
Z.
,
2023
, “
Stress-Based Evolutionary Topology Optimization via XIGA With Explicit Geometric Boundaries
,”
Int. J. Mech. Sci.
,
256
, p.
108512
.
40.
Wang
,
L.
,
Liu
,
Z.
,
Da
,
D.
,
Chan
,
Y.
,
Chen
,
W.
, and
Zhu
,
P.
,
2022
, “
Generalized de-Homogenization via Sawtooth-Function-Based Mapping and Its Demonstration on Data-Driven Frequency Response Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
395
, p.
114967
.
41.
Wang
,
H.
,
Liao
,
Y.
,
Wen
,
G.
,
Chen
,
L.
, and
Liu
,
J.
,
2024
, “
Comprehensive Study on Fail-Safe Topological Design Method for 3D Structures
,”
Acta Mech. Sin.
,
40
(
6
), p.
423452
.
42.
Wu
,
Y.
,
Yvonnet
,
J.
,
Li
,
P.
, and
He
,
Z.
,
2022
, “
Topology Optimization for Enhanced Dynamic Fracture Resistance of Structures
,”
Comput. Meth. Appl. Mech. Eng.
,
394
, p.
114846
.
43.
Qiu
,
W.
,
Wang
,
Q.
,
He
,
J.
,
Xiong
,
Y.
,
Gao
,
L.
, and
Xia
,
Z.
,
2024
, “
Phase-Field Fracture Analysis for Implicit Geometric Model via Adaptive Extended Isogeometric Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
420
, p.
116742
.
44.
Qiu
,
W.
,
Wang
,
Q.
,
Xia
,
L.
, and
Xia
,
Z.
,
2024
, “
Designing Brittle Fracture-Resistant Structures: A Tensile Strain Energy-Minimized Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
432
, p.
117329
.
You do not currently have access to this content.