Abstract

Bending fatigue in aerogel-cored stitched sandwich composites (ACSSCs) is a critical issue for their application in thermal protection systems (TPSs) in the context of reusability requirements. This study pioneers the introduction of a synergistic multiscale approach in the investigation of the bending fatigue behavior of ACSSCs using cost-effective finite element simulations, addressing the challenge of primarily relying on experimentation for the life prediction of ACSSCs. The multiscale method employs the node-based submodeling technique, enabling flexible selection of local analysis regions in complex structures and achieving the interaction between the local damage and the global structural response, combining the advantages of both. Initially, multiscale models for the stitched core within the ACSSC panel were established, which ensured calculation accuracy through convergence verification. Subsequently, the fatigue damage models for the components based on their fatigue life curves were established. The fatigue damage amplification technique was proposed to enhance computational efficiency in the fatigue simulation. Bending fatigue simulations were performed to predict the fatigue lives of ACSSC panels under varying vibration conditions. Finally, bending fatigue tests were conducted to verify the accuracy of the simulations. The results indicated that the predicted fatigue failure modes agreed well with the experimental observations. Moreover, the lives predicted closely matched experimental results, falling within a scattering band of ±2.44. Thus, the proposed method can effectively anticipate fatigue behavior in the ACSSC structures. In addition, this article examined the beneficial impact of stitching on enhancing the fatigue life of the sandwich structure.

References

1.
Wang
,
M.
,
Zhang
,
P.
,
Fei
,
Q.
, and
Guo
,
F.
,
2020
, “
Modified Micro-Mechanics Based Multiscale Model for Progressive Failure Prediction of 2D Twill Woven Composites
,”
Chin. J. Aeronaut.
,
33
(
7
), pp.
2070
2087
.
2.
Santiuste
,
C.
,
Sánchez-Sáez
,
S.
, and
Barbero
,
E.
,
2010
, “
A Comparison of Progressive-Failure Criteria in the Prediction of the Dynamic Bending Failure of Composite Laminated Beams
,”
Compos. Struct.
,
92
(
10
), pp.
2406
2414
.
3.
Kai
,
Q.
,
Renjun
,
Y.
,
Wei
,
S.
, and
Yaoyu
,
H.
,
2020
, “
Research on the Tension Damage Behavior of Sandwich Composite L-Joints: Experiment and Simulation
,”
Compos. Struct.
,
232
, p.
111566
.
4.
Martinez
,
O.
,
Sankar
,
B.
,
Haftka
,
R.
, and
Blosser
,
M. L.
,
2012
, “
Two-Dimensional Orthotropic Plate Analysis for an Integral Thermal Protection System
,”
AIAA J.
,
50
(
2
), pp.
387
398
.
5.
Meng
,
S.
,
Yang
,
Q.
,
Huo
,
S.
, and
Xie
,
W.
,
2013
, “
State-of-Arts and Trend of Integrated Thermal Protection Systems
,”
J. Astronaut.
,
34
(
10
), pp.
1295
1302
.
6.
Villanueva
,
D.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2011
, “
Including the Effect of a Future Test and Redesign in Reliability Calculations
,”
AIAA J.
,
49
(
12
), pp.
2760
2769
.
7.
Breunig
,
P.
,
Damodaran
,
V.
,
Shahapurkar
,
K.
,
Waddar
,
S.
,
Doddamani
,
M.
,
Jeyaraj
,
P.
, and
Prabhakar
,
P.
,
2020
, “
Dynamic Impact Behavior of Syntactic Foam Core Sandwich Composites
,”
J. Compos. Mater.
,
54
(
4
), pp.
535
547
.
8.
Sun
,
Y.
,
Lv
,
S.
,
Yang
,
X.
,
Huang
,
J.
,
Fu
,
Z.
,
Zheng
,
X.
,
Dong
,
L.
, et al
,
2022
, “
Mechanical Modeling of a Stitched Sandwich Thermal Protection Structure With Ceramic-Fiber-Reinforced SiO2 Aerogel as Core Layer
,”
J. Sandwich Struct. Mater.
,
24
(
2
), pp.
1028
1048
.
9.
Lainé
,
C.
,
Le Grognec
,
P.
,
Panier
,
S.
, and
Binetruy
,
C.
,
2014
, “
Analytical, Numerical and Experimental Study of the Transverse Shear Behavior of a 3D Reinforced Sandwich Structure
,”
Eur. J. Mech. - A Solids
,
47
, pp.
231
245
.
10.
Wang
,
P.
,
Lei
,
Y.
, and
Yue
,
Z.
,
2013
, “
Experimental and Numerical Evaluation of the Flexural Properties of Stitched Foam Core Sandwich Structure
,”
Compos. Struct.
,
100
, pp.
243
248
.
11.
Wu
,
Z.
,
Xiao
,
J.
,
Zeng
,
J.
, and
Liu
,
J.
,
2014
, “
Experiments on Shear Performance of Integrated 3D Composite Sandwich Structures
,”
J. Sandwich Struct. Mater.
,
16
(
6
), pp.
614
632
.
12.
Drake
,
D. A.
,
Sullivan
,
R. W.
,
Clay
,
S. B.
, and
DuBien
,
J. L.
,
2021
, “
Influence of Stitching on the Fracture of Stitched Sandwich Composites
,”
Compos. Part Appl. Sci. Manuf.
,
145
, p.
106383
.
13.
Lascoup
,
B.
,
Aboura
,
Z.
,
Khellil
,
K.
, and
Benzeggagh
,
M.
,
2010
, “
Impact Response of Three-Dimensional Stitched Sandwich Composite
,”
Compos. Struct.
,
92
(
2
), pp.
347
353
.
14.
Francesconi
,
L.
, and
Aymerich
,
F.
,
2017
, “
Numerical Simulation of the Effect of Stitching on the Delamination Resistance of Laminated Composites Subjected to Low-Velocity Impact
,”
Compos. Struct.
,
159
, pp.
110
120
.
15.
Zhou
,
Y.
,
Hang
,
X.
,
Wu
,
S.
,
Fei
,
Q.
, and
Trisovic
,
N.
,
2017
, “
Frequency-Dependent Random Fatigue of Panel-Type Structures Made of Ceramic Matrix Composites
,”
Acta Mech. Solida Sin.
,
30
(
2
), pp.
165
173
.
16.
Wu
,
X.
,
Yu
,
H.
,
Guo
,
L.
,
Zhang
,
L.
,
Sun
,
X.
, and
Chai
,
Z.
,
2019
, “
Experimental and Numerical Investigation of Static and Fatigue Behaviors of Composites Honeycomb Sandwich Structure
,”
Compos. Struct.
,
213
, pp.
165
172
.
17.
Liu
,
L.
,
Guo
,
Q.
, and
He
,
T.
,
2014
, “
Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments
,”
Adv. Mech. Eng.
,
6
, p.
176891
.
18.
Yurddaskal
,
M.
,
Ozmen
,
U.
,
Kir
,
M.
, and
Okutan Baba
,
B.
,
2018
, “
The Effect of Foam Properties on Vibration Response of Curved Sandwich Composite Panels
,”
Compos. Struct.
,
183
, pp.
278
285
.
19.
Shabani
,
P.
, and
Shabani
,
N.
,
2022
, “
Fatigue Life Prediction of High-Speed Composite Craft Under Slamming Loads Using Progressive Fatigue Damage Modeling Technique
,”
Eng. Fail. Anal.
,
131
, p.
105818
.
20.
Xu
,
J.
,
Lomov
,
S. V.
,
Verpoest
,
I.
,
Daggumati
,
S.
,
Van Paepegem
,
W.
, and
Degrieck
,
J.
,
2015
, “
A Progressive Damage Model of Textile Composites on Meso-Scale Using Finite Element Method: Fatigue Damage Analysis
,”
Comput. Struct.
,
152
, pp.
96
112
.
21.
Zhang
,
L.
,
Qiu
,
R.
,
Cheng
,
J.
, and
Liu
,
B.
,
2021
, “
Experimental Investigation and Multiscale Simulation on the Bending Fatigue of 2D SiCf/SiC Composites
,”
Int. J. Fatigue
,
144
, p.
106051
.
22.
Jian
,
Y.
,
Chen
,
M.
,
Sha
,
Z.
,
Cai
,
D.
,
Jiang
,
Y.
,
Li
,
S.
,
Zhou
,
G.
, and
Wang
,
X.
,
2024
, “
High-Cycle Random Vibration Fatigue Behavior of CFRP Composite Thin Plates
,”
Eng. Fail. Anal.
,
159
, p.
108089
.
23.
Liu
,
Z.
,
Liang
,
J.
,
He
,
Z.
,
Liu
,
X.
,
Liu
,
H.
, and
Shao
,
Z.
,
2024
, “
A Developed Fatigue Analysis Approach for Composite Wind Turbine Blade Adhesive Joints Using Finite-Element Submodeling Technique
,”
Eng. Fail. Anal.
,
164
, p.
108701
.
24.
Boualem
,
K.
,
2013
, “
Static and Fatigue Characterization of Nomex Honeycomb Sandwich Panels
,”
Pamukkale Üniv. Mühendis. Bilim. Derg.
,
19
(
7
), pp.
287
292
.
25.
Amulani
,
A.
,
Pratap
,
H.
, and
Thomas
,
B.
,
2021
, “
Investigation of Static and Fatigue Behavior of Honeycomb Sandwich Structure: A Computational Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
11
), p.
476
.
26.
Ma
,
M.
,
Yao
,
W.
,
Jiang
,
W.
,
Jin
,
W.
,
Chen
,
Y.
,
Li
,
P.
, and
Huang
,
J.
,
2022
, “
Fatigue of Composite Honeycomb Sandwich Panels Under Random Vibration Load
,”
Compos. Struct.
,
286
, p.
115296
.
27.
Shafiq
,
B.
, and
Quispitupa
,
A.
,
2006
, “
Fatigue Characteristics of Foam Core Sandwich Composites
,”
Int. J. Fatigue
,
28
(
2
), pp.
96
102
.
28.
Wang
,
L.
,
Zhang
,
Y. W.
,
Ho
,
J. C. M.
, and
Lai
,
M. H.
,
2020
, “
Fatigue Behaviour of Composite Sandwich Beams Strengthened With GFRP Stiffeners
,”
Eng. Struct.
,
214
, p.
110596
.
29.
Idriss
,
M.
, and
El Mahi
,
A.
,
2017
, “
Effects of Debonding Length on the Fatigue and Vibration Behaviour of Sandwich Composite
,”
J. Compos. Mater.
,
51
(
13
), pp.
1839
1847
.
30.
Kim
,
J. H.
,
Lee
,
Y. S.
,
Park
,
B. J.
, and
Kim
,
D. H.
,
1999
, “
Evaluation of Durability and Strength of Stitched Foam-Cored Sandwich Structures
,”
Compos. Struct.
,
47
(
1
), pp.
543
550
.
31.
Ai
,
S.
,
Mao
,
Y.
,
Pei
,
Y.
,
Fang
,
D.
, and
Tang
,
L.
,
2013
, “
Effect of Stitch on Thermodynamic Properties of Sandwiched Thermal Protection Structures
,”
Compos. Struct.
,
99
, pp.
41
47
.
32.
Zhang
,
Z.
,
Hao
,
J.
,
Sun
,
Z.
,
Chen
,
M.
, and
Gu
,
Y.
,
2010
, “
Thermal Expansion Process for Manufacturing of Stitched Sandwich Structures
,”
J. Reinf. Plast. Compos.
,
29
(
9
), pp.
1418
1427
.
33.
Ji
,
X.
,
Hao
,
Z.
,
Su
,
L.
,
He
,
T.
, and
Liu
,
L.
,
2020
, “
Characterizing the Constitutive Response of Plain-Woven Fibre Reinforced Aerogel Matrix Composites Using Digital Image Correlation
,”
Compos. Struct.
,
234
, p.
111652
.
34.
Mi
,
C.
,
Jiang
,
Y.
,
Shi
,
D.
,
Han
,
S.
,
Sun
,
Y.
,
Yang
,
X.
, and
Feng
,
J.
,
2014
, “
Mechanical Property Test of Ceramic Fiber Reinforced Silica Aerogel Composites
,”
Acta Mater. Compos. Sin.
,
31
(
3
), pp.
635
643
.
35.
Lin
,
C.
,
Lee
,
F.
, and
Xue
,
T.
,
2019
, “
Effect of Suture on Mechanical Properties of Stitched Thermal Protection Sandwich
,”
Mater. Res.
,
22
(
6
), p.
e20190435
.
36.
Omairey
,
S. L.
,
Dunning
,
P. D.
, and
Sriramula
,
S.
,
2019
, “
Development of an ABAQUS Plugin Tool for Periodic RVE Homogenisation
,”
Eng. Comput.
,
35
(
2
), pp.
567
577
.
37.
Karahan
,
M.
,
Lomov
,
S. V.
,
Bogdanovich
,
A. E.
, and
Verpoest
,
I.
,
2011
, “
Fatigue Tensile Behavior of Carbon/Epoxy Composite Reinforced With Non-Crimp 3D Orthogonal Woven Fabric
,”
Compos. Sci. Technol.
,
71
(
16
), pp.
1961
1972
.
38.
Zuo
,
H.
,
Li
,
D.
, and
Jiang
,
L.
,
2020
, “
Experimental Study on Compressive Fatigue Behavior and Failure Mechanism of 3D Five-Directional Braided Composites
,”
Compos. Part Appl. Sci. Manuf.
,
139
, p.
106097
.
39.
Yu
,
J.
,
Fei
,
Q.
,
Zhang
,
P.
,
Li
,
Y.
, and
Chen
,
Q.
,
2021
, “
Fatigue Life of a 2.5D C/SiC Composite Under Tension–Tension Cyclic Loading: Experimental Investigation and Sensitivity Analysis
,”
Acta Mech. Solida Sin.
,
34
(
5
), pp.
645
657
.
40.
Hui
,
X.
,
Xu
,
Y.
, and
Hou
,
Y.
,
2021
, “
A Coupled Micro–Meso-Scale Study on the Damage Mechanism of 2D SiC/SiC Ceramic Matrix Composites
,”
Mech. Adv. Mater. Struct.
,
28
(
20
), pp.
2083
2095
.
41.
Zheng
,
J.
,
Zhang
,
P.
,
Zhang
,
D.
, and
Jiang
,
D.
,
2021
, “
A Multi-scale Submodel Method for Fatigue Analysis of Braided Composite Structures
,”
Materials
,
14
(
15
), p.
4190
.
42.
Zuo
,
F.
,
Huang
,
H.
,
Zhu
,
S.
,
Lv
,
Z.
, and
Gao
,
H.
,
2015
, “
Fatigue Life Prediction Under Variable Amplitude Loading Using a Non-Linear Damage Accumulation Model
,”
Int. J. Damage Mech.
,
24
(
5
), pp.
767
784
.
43.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
A159
A164
.
44.
Van Paepegem
,
W.
,
Degrieck
,
J.
, and
De Baets
,
P.
,
2001
, “
Finite Element Approach for Modelling Fatigue Damage in Fibre-Reinforced Composite Materials
,”
Compos. Part B: Eng.
,
32
(
7
), pp.
575
588
.
45.
Liu
,
F.
,
Xie
,
M.
,
Ji
,
Y.
, and
Zhou
,
M.
,
2020
, “
Progressive Fatigue Damage Analysis of Composite Bolted Joint Using Equivalent Stress Model
,”
Sci. Prog.
,
103
(
1
), pp.
1
14
.
46.
Tian
,
Z.
,
Zhang
,
P.
, and
Fei
,
Q.
,
2023
, “
Experimental Investigations of Failure Behavior for Aerogel-Cored Stitched Sandwich Composites Under Vibration Conditions
,”
AIAA J.
,
62
(
3
), pp.
1067
1075
.
You do not currently have access to this content.