Abstract

We investigate the conditions for the local arrest of a hydraulic fracture encountering a region of larger toughness. The propagation of a hydraulic fracture strongly depends on the ratio between the energy dissipated in the creation of new fracture surfaces and the energy dissipated in viscous flow. Because this ratio evolves during propagation, a hydraulic fracture can exhibit different behaviors when encountering the same toughness heterogeneity. The fracture can be locally arrested or its velocity only reduced. When viscous fluid flow dissipation dominates, a larger increase of fracture toughness is required to locally arrest the fracture. In the framework of linear hydraulic fracture mechanics, we determine the conditions under which a region of higher fracture toughness is capable of arresting a propagating hydraulic fracture. In particular, we obtain a relation for the minimum increase of fracture toughness required to locally arrest a fracture as a function of the dimensionless ratio of the dissipated energies (viscous versus fracture) when the fracture has just reached the heterogeneity. We obtain relations for the full parametric space covering both toughness- and viscous-dominated regimes. Fully coupled numerical simulations of hydraulic fracture growth confirm the scaling relations.

References

1.
Montgomery
,
C. T.
, and
Smith
,
M. B.
,
2010
, “
Hydraulic Fracturing: History of an Enduring Technology
,”
J. Pet. Technol.
,
62
(
12
), pp.
26
40
.
2.
Bunger
,
A.
, and
Lecampion
,
B.
,
2017
,
Four Critical Issues for Successful Hydraulic Fracturing Applications
,
CRC Press
,
London
, Chapter 16, pp.
551
593
.
3.
Tsai
,
V. C.
, and
Rice
,
J. R.
,
2010
, “
A Model for Turbulent Hydraulic Fracture and Application to Crack Propagation at Glacier Beds
,”
J. Geophys. Res.: Earth Surf.
,
115
(
F3
), p.
F03007
.
4.
Rivalta
,
E.
,
Taisne
,
B.
,
Bunger
,
A.
, and
Katz
,
R.
,
2015
, “
A Review of Mechanical Models of Dike Propagation: Schools of Thought, Results and Future Directions
,”
Tectonophysics
,
638
, pp.
1
42
.
5.
Detournay
,
E.
,
2016
, “
Mechanics of Hydraulic Fractures
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
311
339
.
6.
Bunger
,
A.
, and
Detournay
,
E.
,
2008
, “
Experimental Validation of the Tip Asymptotics for a Fluid-Driven Crack
,”
J. Mech. Phys. Solids
,
56
(
11
), pp.
3101
3115
.
7.
Garagash
,
D.
,
Bunger
,
A.
, and
Rohde
,
A.
,
2009
, “
Leading Edge of a Hydraulic Fracture Crossing a Stress Boundary (Paper No. T02. 008)
,” Proceedings of 12th International Conference on Fracture, Ottawa, July 12–17.
8.
Jeffrey
,
R. G.
, and
Bunger
,
A.
,
2009
, “
A Detailed Comparison of Experimental and Numerical Data on Hydraulic Fracture Height Growth Through Stress Contrasts
,”
SPE J.
,
14
(
3
), pp.
413
422
.
9.
Lecampion
,
B.
,
Desroches
,
J.
,
Jeffrey
,
R. G.
, and
Bunger
,
A. P.
,
2017
, “
Experiments Versus Theory for the Initiation and Propagation of Radial Hydraulic Fractures in Low Permeability Materials
,”
J. Geophys. Res.: Solid Earth
,
122
(
2
), pp.
1239
1263
.
10.
Lu
,
G.
,
Momeni
,
S.
,
Peruzzo
,
C.
,
Moukhtari
,
F.-E.
, and
Lecampion
,
B.
,
2024
, “
Rock Anisotropy Promotes Hydraulic Fracture Containment at Depth
,”
J. Geophys. Res.: Solid Earth
,
129
(
4
), p.
e2023JB028011
.
11.
Wu
,
R.
,
Bunger
,
A. P.
,
Jeffrey
,
R. G.
, and
Siebrits
,
E.
,
2008
, “
A Comparison of Numerical and Experimental Results of Hydraulic Fracture Growth Into a Zone of Lower Confining Stress
,” The 42nd US Rock Mechanics Symposium, No. ARMA-08-267, American Rock Mechanics Association.
12.
Irwin
,
G.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
J. Appl. Mech.
,
24
(
3
), pp.
361
364
.
13.
Möri
,
A.
, and
Lecampion
,
B.
,
2022
, “
Three-Dimensional Buoyant Hydraulic Fractures: Constant Release From a Point Source
,”
J. Fluid Mech.
,
950
, p.
A12
.
14.
Möri
,
A.
, and
Lecampion
,
B.
,
2023
, “
Three-Dimensional Buoyant Hydraulic Fractures: Finite-Volume Release
,”
J. Fluid Mech.
,
972
, p.
A20
. doi:10.1017/jfm.2023.711
15.
Garagash
,
D.
, and
Detournay
,
E.
,
1998
, “
Similarity Solution of a Semi-infinite Fluid-Driven Fracture in a Linear Elastic Solid
,”
C. R. Acad. Sci. Ser. IIB Mech. Phys. Chem. Astron.
,
326
(
5
), pp.
285
292
.
16.
Garagash
,
D. I.
, and
Detournay
,
E.
,
2000
, “
The Tip Region of a Fluid-Driven Fracture in an Elastic Medium
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
183
192
.
17.
Crouch
,
S. L.
,
Starfield
,
A. M.
, and
Rizzo
,
F. J.
,
1983
,
Boundary Element Methods in Solid Mechanics
,
George Allen & Unwin
,
London
.
18.
Hills
,
D.
,
Kelly
,
P.
,
Dai
,
D.
, and
Korsunsky
,
A.
,
2013
,
Solution of Crack Problems: The Distributed Dislocation Technique
,
Springer
,
Dordrecht
.
19.
Batchelor
,
G.
,
1967
,
An Introduction to Fluid Dynamics
(
Cambridge Mathematical Library
),
Cambridge University Press
.
20.
Szeri
,
A. Z.
,
2010
,
Fluid Film Lubrication
,
Cambridge University Press
.
21.
Savitski
,
A.
, and
Detournay
,
E.
,
2002
, “
Propagation of a Penny-Shaped Fluid-Driven Fracture in an Impermeable Rock: Asymptotic Solutions
,”
Int. J. Solids Struct.
,
39
(
26
), pp.
6311
6337
.
22.
Peruzzo
,
C.
,
Möri
,
A.
, and
Lecampion
,
B.
,
2024
, “
The Energy Balance of a Hydraulic Fracture at Depth
,”
Int. J. Eng. Sci.
,
205
, p.
104151
.
23.
Lecampion
,
B.
, and
Detournay
,
E.
,
2007
, “
An Implicit Algorithm for the Propagation of a Hydraulic Fracture With a Fluid Lag
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
49
), pp.
4863
4880
.
24.
Garagash
,
D.
,
2009
, “
Scaling of Physical Processes in Fluid-Driven Fracture: Perspective From the Tip
,” IUTAM Symposium on Scaling in Solid Mechanics, Cardiff, UK, June 25–29, 2007,
Springer
, pp.
91
100
.
25.
Garagash
,
D.
,
Detournay
,
E.
, and
Adachi
,
J.
,
2011
, “
Multiscale Tip Asymptotics in Hydraulic Fracture With Leak-Off
,”
J. Fluid Mech.
,
669
, pp.
260
297
.
26.
Detournay
,
E.
, and
Peirce
,
A.
,
2014
, “
On the Moving Boundary Conditions for a Hydraulic Fracture
,”
Int. J. Eng. Sci.
,
84
, pp.
147
155
.
27.
Zia
,
H.
, and
Lecampion
,
B.
,
2020
, “
PyFrac: A Planar 3d Hydraulic Fracture Simulator
,”
Comput. Phys. Commun.
,
255
, pp.
107368
.
28.
Dontsov
,
E.
, and
Peirce
,
A.
,
2015
, “
A Non-singular Integral Equation Formulation to Analyse Multiscale Behaviour in Semi-infinite Hydraulic Fractures
,”
J. Fluid Mech.
,
781
, p.
R1
.
29.
Madyarova
,
M.
,
2003
, “Fluid-Driven Penny-Shaped Fracture in Elastic Medium,” Master’s thesis,
University of Minnesota
.
You do not currently have access to this content.