Abstract

This study describes a micromechanics model for estimating the effective vascular permeability for a biological tissue containing parallel microvessels subjected to finite deformations. The representative volume element in the proposed model consists of a hollow cylinder with the inner radius being the microvessel radius and the outer radius determined using the volume fraction of the microvessels in the tissue. The effective vascular permeability is determined using the Poiseuille equation for the microvascular flow, Darcy's law for the homogenized porous tissue, and finite deformation of the tissue matrix modeled as a nonlinear elastic material. The numerical results show that the effective vascular permeability decreases with an increase in the applied pressure on the tissue. The effective permeability can be significantly larger than the reference permeability when the applied pressure is much smaller than the microvascular pressure. On the other hand, the effective permeability becomes less than 30% of the reference permeability when the applied pressure is greater than two times the microvascular pressure. Finally, the effective vascular permeability increases monotonically with an increasing ratio of the deformed volume to the reference volume of the tissue.

References

1.
Fung
,
Y. C.
,
1996
,
Biomechanics: Circulation
, 2nd ed.,
Springer
,
New York
.
2.
Papenfuss
,
H. D.
, and
Gross
,
J. F.
,
1978
, “
Analytic Study of the Influence of Capillary Pressure Drop and Permeability on Glomerular Ultrafiltration
,”
Microvasc. Res.
,
16
(
1
), pp.
59
72
.
3.
Baish
,
J. W.
,
Netti
,
P. A.
, and
Jain
,
R. K.
,
1997
, “
Transmural Coupling of Fluid Flow in Microcirculatory Network and Interstitium in Tumors
,”
Microvasc. Res.
,
53
(
2
), pp.
128
141
.
4.
Stephanou
,
A.
,
McDougall
,
S. R.
,
Anderson
,
A. R. A.
, and
Chaplain
,
M. A. J.
,
2005
, “
Mathematical Modeling of Flow in 2D and 3D Vascular Networks: Applications to Antiangiogenic and Chemotherapeutic Drug Strategies
,”
Math. Comput. Modell.
,
41
(
10
), pp.
1137
1156
.
5.
Pozrikidis
,
C.
,
2009
, “
Numerical Simulation of Blood Flow Through Microvascular Capillary Networks
,”
Bull. Math. Biol.
,
71
(
6
), pp.
1520
1541
.
6.
Soltani
,
M.
, and
Chen
,
P.
,
2013
, “
Numerical Modeling of Interstitial Fluid Flow Coupled With Blood Flow Through a Remodeled Solid Tumor Microvascular Network
,”
PLoS One
,
8
(
6
), p.
e67025
.
7.
Causin
,
P.
,
Guidoboni
,
G.
,
Malgaroli
,
F.
,
Sacco
,
R.
, and
Harris
,
A.
,
2016
, “
Blood Flow Mechanics and Oxygen Transport and Delivery in the Retinal Microcirculation: Multiscale Mathematical Modeling and Numerical Simulation
,”
Biomech. Model. Mechanobiol.
,
15
(
3
), pp.
525
542
.
8.
Jain
,
R. K.
,
1988
, “
Determinants of Tumor Blood Flow: A Review
,”
Cancer Res.
,
48
(
10
), pp.
2641
2658
. https://aacrjournals.org/cancerres/article/48/10/2641/492519/Determinants-of-Tumor-Blood-Flow-A-Review1
9.
McGuire
,
B. J.
, and
Secomb
,
T. W.
,
2003
, “
Estimation of Capillary Density in Human Skeletal Muscle Based on Maximal Oxygen Consumption Rates
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(
6
), pp.
H2382
H2391
.
10.
Hindel
,
S.
,
Söhner
,
A.
,
Maaß
,
M.
,
Sauerwein
,
W.
,
Möllmann
,
D.
,
Baba
,
H. A.
,
Kramer
,
M.
, and
Lüdemann
,
L.
,
2017
, “
Validation of Blood Volume Fraction Quantification With 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal. Muscle
,”
PLoS One
,
12
(
1
), p.
e0170841
.
11.
Mascheroni
,
P.
, and
Penta
,
R.
,
2017
, “
The Role of the Microvascular Network Structure on Diffusion and Consumption of Anticancer Drugs
,”
Int. J. Numer. Meth. Biomed. Eng.
,
33
(
10
), p.
e2857
.
12.
Coccarelli
,
A.
,
Prakash
,
A.
, and
Nithiarasu
,
P.
,
2019
, “
A Novel Porous Media-Based Approach to Outflow Boundary Resistances of 1D Arterial Blood Flow Models
,”
Biomech. Model. Mechanobiol.
,
18
(
4
), pp.
939
951
.
13.
Shipley
,
R. J.
,
Smith
,
A. F.
,
Sweeney
,
P. W.
,
Pries
,
A. R.
, and
Secomb
,
T. W.
,
2020
, “
A Hybrid Discrete-Continuum Approach for Modelling Microcirculatory Blood Flow
,”
Math. Med. Biol.
,
37
(
1
), pp.
40
57
.
14.
Smith
,
A. F.
,
Shipley
,
R. J.
,
Lee
,
J.
,
Sands
,
G. B.
,
LeGrice
,
I. J.
, and
Smith
,
N. P.
,
2014
, “
Transmural Variation and Anisotropy of Microvascular Flow Conductivity in the Rat Myocardium
,”
Ann. Biomed. Eng.
,
42
(
9
), pp.
1966
1977
.
15.
Qohar
,
U. N. A.
,
Munthe-Kaas
,
A. Z.
,
Nordbotten
,
J. M.
, and
Hanson
,
E. A.
,
2021
, “
A Nonlinear Multi-Scale Model for Blood Circulation in a Realistic Vascular System
,”
R. Soc. Open Sci.
,
8
(
12
), p.
201949
.
16.
Jin
,
Z.
, and
Yuan
,
F.
,
2023
, “
A Double-Permeability Poroelasticity Model for Fluid Transport in a Biological Tissue
,”
Transp. Porous Media
,
147
(
1
), pp.
169
195
.
17.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
(
1–2
), pp.
111
123
.
18.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.
19.
Smith
,
J. H.
, and
Garcia
,
J. J.
,
2009
, “
A Nonlinear Biphasic Model of Flow-Controlled Infusion in Brain: Fluid Transport and Tissue Deformation Analyses
,”
J. Biomech.
,
42
(
13
), pp.
2017
2025
.
20.
McGuire
,
S.
,
Zaharoff
,
D.
, and
Yuan
,
F.
,
2006
, “
Nonlinear Dependence of Hydraulic Conductivity on Tissue Deformation During Intratumoral Infusion
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1173
1181
.
21.
Hashin
,
Z.
, and
Rosen
,
B. W.
,
1964
, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
223
232
.
22.
Christensen
,
R. M.
,
2005
,
Mechanics of Composite Materials
,
Dover Publications
,
Mineola, NY
.
23.
Yih
,
C.-S.
,
1988
,
Fluid Mechanics
,
West River Press
,
Ann Arbor, MI
.
24.
Batra
,
R. C.
,
2006
,
Elements of Continuum Mechanics
,
AIAA
,
Reston, VA
.
25.
Baish
,
J. W.
,
Padera
,
T. P.
, and
Munn
,
L. L.
,
2022
, “
The Effects of Gravity and Compression on Interstitial Fluid Transport in the Lower Limb
,”
Sci. Rep.
,
12
(
1
), p.
4890
.
You do not currently have access to this content.