Abstract

As a companion work to [1], this article presents a series of simple formulae and explicit results that illustrate and highlight why classical variational phase-field models cannot possibly predict fracture nucleation in elastic brittle materials. The focus is on “tension-dominated” problems where all principal stresses are nonnegative, that is, problems taking place entirely within the first octant in the space of principal stresses.

References

1.
Lopez-Pamies
,
O.
,
Dolbow
,
J. E.
,
Francfort
,
G. A.
, and
Larsen
,
C. J.
,
2025
, “
Classical Variational Phase-Field Models Cannot Predict Fracture Nucleation
,”
Comput. Methods. Appl. Mech. Eng.
,
433
, p.
117520
.
2.
Kumar
,
A.
,
Francfort
,
G. A.
, and
Lopez-Pamies
,
O.
,
2018
, “
Fracture and Healing of Elastomers: A Phase-Transition Theory and Numerical Implementation
,”
J. Mech. Phys. Solids
,
112
, pp.
523
551
.
3.
Kumar
,
A.
, and
Lopez-Pamies
,
O.
,
2020
, “
The Phase-Field Approach to Self-Healable Fracture of Elastomers: A Model Accounting for Fracture Nucleation at Large, With Application to a Class of Conspicuous Experiments
,”
Theor. Appl. Fract. Mec.
,
107
, p.
102550
.
4.
Kumar
,
A.
,
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Lopez-Pamies
,
O.
,
2020
, “
Revisiting Nucleation in the Phase-Field Approach to Brittle Fracture
,”
J. Mech. Phys. Solids
,
142
, p.
104027
.
5.
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
, pp.
1319
1342
.
6.
Lorentz
,
E.
,
Cuvilliez
,
S.
, and
Kazymyrenko
,
K.
,
2011
, “
Convergence of a Gradient Damage Model Toward a Cohesive Zone Model
,”
Compt. R. Mecanique
,
339
, pp.
20
26
.
7.
Conti
,
S.
,
Focardi
,
M.
, and
Iurlano
,
F.
,
2016
, “
Phase Field Approximation of Cohesive Fracture Models
,”
Ann. Inst. Henri Poincaré C Anal. Linèaire
,
33
, pp.
1033
1067
.
8.
Wu
,
J. Y.
,
2017
, “
A Unified Phase-Field Theory for the Mechanics of Damage and Quasi-Brittle Failure
,”
J. Mech. Phys. Solids
,
103
, pp.
72
99
.
9.
Larsen
,
C. J.
,
Dolbow
,
J. E.
, and
Lopez-Pamies
,
O.
,
2024
, “
A Variational Formulation of Griffith Phase-Field Fracture With Material Strength
,”
Int. J. Fract.
,
247
, pp.
319
327
.
10.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
, pp.
797
826
.
11.
Tanné
,
E.
,
Li
,
T.
,
Bourdin
,
B.
,
Marigo
,
J. J.
, and
Maurini
,
C.
,
2018
, “
Crack Nucleation in Variational Phase-Field Models of Brittle Fracture
,”
J. Mech. Phys. Solids
,
110
, pp.
80
99
.
12.
Vicentini
,
F.
,
Zolesi
,
C.
,
Carrara
,
P.
,
Maurini
,
C.
, and
De Lorenzis
,
L.
,
2024
, “
On the Energy Decomposition in Variational Phase-Field Models for Brittle Fracture Under Multi-axial Stress States
,”
Inter. J. Fract.
,
247
, pp.
291
317
.
13.
Fan
,
M.
,
Jin
,
Y.
, and
Wick
,
T.
,
2022
, “
A Quasi-Monolithic Phase-Field Description for Mixed-Mode Fracture Using Predictor–Corrector Mesh Adaptivity
,”
Eng. Comput.
,
38
, pp.
S2879
S2903
.
14.
Ferreira
,
A. R.
,
Marengo
,
A.
, and
Perego
,
U.
,
2024
, “
A Phase-Field Gradient-Based Energy Split for the Modeling of Brittle Fracture Under Load Reversal
,”
Comput. Methods. Appl. Mech. Eng.
,
431
, p.
117328
.
15.
Kamarei
,
F.
,
Kumar
,
A.
, and
Lopez-Pamies
,
O.
,
2024
, “
The Poker-Chip Experiments of Synthetic Elastomers Explained
,”
J. Mech. Phys. Solids
,
188
, p.
105683
.
16.
Lo
,
Y. S.
,
Hughes
,
T. J. R.
, and
Landis
,
C. M.
,
2023
, “
Phase-Field Fracture Modeling for Large Structures
,”
J. Mech. Phys. Solids
,
171
, p.
105118
.
17.
Larsen
,
C. J.
,
2023
, “
Variational Phase-Field Fracture With Controlled Nucleation
,”
Mech. Res. Communicat.
,
128
, p.
104059
.
18.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber. I. Characteristic Energy for Tearing
,”
J. Polym. Sci.
,
10
, pp.
291
318
.
You do not currently have access to this content.