Abstract
As a companion work to [1], this article presents a series of simple formulae and explicit results that illustrate and highlight why classical variational phase-field models cannot possibly predict fracture nucleation in elastic brittle materials. The focus is on “tension-dominated” problems where all principal stresses are nonnegative, that is, problems taking place entirely within the first octant in the space of principal stresses.
References
1.
Lopez-Pamies
, O.
, Dolbow
, J. E.
, Francfort
, G. A.
, and Larsen
, C. J.
, 2025
, “Classical Variational Phase-Field Models Cannot Predict Fracture Nucleation
,” Comput. Methods. Appl. Mech. Eng.
, 433
, p. 117520
. 2.
Kumar
, A.
, Francfort
, G. A.
, and Lopez-Pamies
, O.
, 2018
, “Fracture and Healing of Elastomers: A Phase-Transition Theory and Numerical Implementation
,” J. Mech. Phys. Solids
, 112
, pp. 523
–551
. 3.
Kumar
, A.
, and Lopez-Pamies
, O.
, 2020
, “The Phase-Field Approach to Self-Healable Fracture of Elastomers: A Model Accounting for Fracture Nucleation at Large, With Application to a Class of Conspicuous Experiments
,” Theor. Appl. Fract. Mec.
, 107
, p. 102550
. 4.
Kumar
, A.
, Bourdin
, B.
, Francfort
, G. A.
, and Lopez-Pamies
, O.
, 2020
, “Revisiting Nucleation in the Phase-Field Approach to Brittle Fracture
,” J. Mech. Phys. Solids
, 142
, p. 104027
. 5.
Francfort
, G. A.
, and Marigo
, J. J.
, 1998
, “Revisiting Brittle Fracture as an Energy Minimization Problem
,” J. Mech. Phys. Solids
, 46
, pp. 1319
–1342
. 6.
Lorentz
, E.
, Cuvilliez
, S.
, and Kazymyrenko
, K.
, 2011
, “Convergence of a Gradient Damage Model Toward a Cohesive Zone Model
,” Compt. R. Mecanique
, 339
, pp. 20
–26
. 7.
Conti
, S.
, Focardi
, M.
, and Iurlano
, F.
, 2016
, “Phase Field Approximation of Cohesive Fracture Models
,” Ann. Inst. Henri Poincaré C Anal. Linèaire
, 33
, pp. 1033
–1067
. 8.
Wu
, J. Y.
, 2017
, “A Unified Phase-Field Theory for the Mechanics of Damage and Quasi-Brittle Failure
,” J. Mech. Phys. Solids
, 103
, pp. 72
–99
. 9.
Larsen
, C. J.
, Dolbow
, J. E.
, and Lopez-Pamies
, O.
, 2024
, “A Variational Formulation of Griffith Phase-Field Fracture With Material Strength
,” Int. J. Fract.
, 247
, pp. 319
–327
. 10.
Bourdin
, B.
, Francfort
, G. A.
, and Marigo
, J. J.
, 2000
, “Numerical Experiments in Revisited Brittle Fracture
,” J. Mech. Phys. Solids
, 48
, pp. 797
–826
. 11.
Tanné
, E.
, Li
, T.
, Bourdin
, B.
, Marigo
, J. J.
, and Maurini
, C.
, 2018
, “Crack Nucleation in Variational Phase-Field Models of Brittle Fracture
,” J. Mech. Phys. Solids
, 110
, pp. 80
–99
. 12.
Vicentini
, F.
, Zolesi
, C.
, Carrara
, P.
, Maurini
, C.
, and De Lorenzis
, L.
, 2024
, “On the Energy Decomposition in Variational Phase-Field Models for Brittle Fracture Under Multi-axial Stress States
,” Inter. J. Fract.
, 247
, pp. 291
–317
. 13.
Fan
, M.
, Jin
, Y.
, and Wick
, T.
, 2022
, “A Quasi-Monolithic Phase-Field Description for Mixed-Mode Fracture Using Predictor–Corrector Mesh Adaptivity
,” Eng. Comput.
, 38
, pp. S2879
–S2903
. 14.
Ferreira
, A. R.
, Marengo
, A.
, and Perego
, U.
, 2024
, “A Phase-Field Gradient-Based Energy Split for the Modeling of Brittle Fracture Under Load Reversal
,” Comput. Methods. Appl. Mech. Eng.
, 431
, p. 117328
. 15.
Kamarei
, F.
, Kumar
, A.
, and Lopez-Pamies
, O.
, 2024
, “The Poker-Chip Experiments of Synthetic Elastomers Explained
,” J. Mech. Phys. Solids
, 188
, p. 105683
. 16.
Lo
, Y. S.
, Hughes
, T. J. R.
, and Landis
, C. M.
, 2023
, “Phase-Field Fracture Modeling for Large Structures
,” J. Mech. Phys. Solids
, 171
, p. 105118
. 17.
Larsen
, C. J.
, 2023
, “Variational Phase-Field Fracture With Controlled Nucleation
,” Mech. Res. Communicat.
, 128
, p. 104059
. 18.
Rivlin
, R. S.
, and Thomas
, A. G.
, 1953
, “Rupture of Rubber. I. Characteristic Energy for Tearing
,” J. Polym. Sci.
, 10
, pp. 291
–318
. Copyright © 2024 by ASME
You do not currently have access to this content.