Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

An unresolved question in fracture mechanics is whether the variations in the size or aspect-ratio of cracked plates or structures have a significant effect on the stress intensity factor (SIF) at the crack tip. Indeed, there are significant numerical data showing the effect of specimen aspect-ratio on SIF. There is also experimental evidence supporting the existence of the size effect on fatigue and fracture behavior. However, there is no analytical formula to capture such a size effect on the stress intensity factor for standard fracture mechanics crack configurations. In this study, a novel net-section-based approach is used to develop simple and approximate SIF expressions for center and edge cracks in tension plates of various aspect ratios. Expressions have been derived for both uniform stress as well as uniform displacement boundary conditions. Comparisons are made with the available numerical stress intensity factor data. A remarkable agreement of the net-section-based SIF expressions with the numerical data (complex potential, finite element, and variational approaches) is found. For the clamped-end condition, the net-section approach leads to Rice's limiting SIF for a semi-infinite crack in an infinitely wide strip, validating the analysis. Additionally, the SIF expressions developed here also highlight some discrepancies in numerical data. The study provides simple SIF expressions that can be readily used to analyze specimen size or aspect-ratio effects on critical values of stress intensity factors for cracks in materials and structures under tension loading.

References

1.
Bažant
,
Z. P.
,
1984
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
,
110
(
4
), pp.
518
535
.
2.
Bažant
,
Z. P.
,
Ožbolt
,
J.
, and
Eligehausen
,
R.
,
1994
, “
Fracture Size Effect: Review of Evidence for Concrete Structures
,”
J. Struct. Eng.
,
120
(
8
), pp.
2377
2398
.
3.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
ASME Press
,
New York
.
4.
Isida
,
M.
,
1971
, “
Effect of Width and Length on Stress Intensity Factors of Internally Cracked Plates Under Various Boundary Conditions
,”
Int. J. Fract. Mech.
,
7
(
3
), pp.
301
316
.
5.
Bowie
,
O. L.
,
Freese
,
C. E.
, and
Neal
,
D. M.
,
1973
, “
Solution of Plane Problems of Elasticity Utilizing Partitioning Concepts
,”
ASME J. Appl. Mech.
,
40
(
3
), pp.
767
772
.
6.
Kumar
,
B.
,
Chitsiriphanit
,
S.
, and
Sun
,
C. T.
,
2011
, “
Significance of K-Dominance Zone Size and Nonsingular Stress Field in Brittle Fracture
,”
Eng. Fract. Mech.
,
78
(
9
), pp.
2042
2051
.
7.
Sun
,
C. T.
, and
Qian
,
H.
,
2009
, “
Brittle Fracture Beyond the Stress Intensity Factor
,”
J. Mech. Mater. Struct.
,
4
(
4
), pp.
743
753
.
8.
Mot
,
E.
,
1973
, “
Some Aspects of the Fracture Mechanics of Thin Flexible Films
,”
Eng. Fract. Mech.
,
5
(
4
), pp.
1051
1060
.
9.
Kaiser
,
H.-J.
, and
Hagedorn
,
K. E.
,
1981
, “
The Influence of Specimen Geometry on Stable Crack Growth for a High-Strength Steel
,”
Adv. Fract. Res. (Fract. 81)
,
2
(
2
), pp.
855
862
.
10.
Garr
,
K. R.
, and
Hresko
,
G. C.
,
2000
, “A Size Effect on the Fatigue Crack Growth Rate Threshold of Alloy 718,”
Fatigue Crack Growth Thresholds, Endurance Limits, and Design
,
J. C.
Newman
, and
R. S.
Piasick
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
155
174
.
11.
Brose
,
W. R.
, and
Dowling
,
N. E.
,
1979
, “Size Effects on the Fatigue Crack Growth Rate of Type 304 Stainless Steel,”
Elastic-Plastic Fracture. ASTM STP 668
,
J. D.
Landes
,
J. A.
Begley
, and
G. A.
Clarke
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
720
735
.
12.
Kirane
,
K.
, and
Bažant
,
Z. P.
,
2016
, “
Size Effect in Paris Law and Fatigue Lifetimes for Quasi-brittle Materials: Modified Theory, Experiments, and Micro-modeling
,”
Int. J. Fatigue
,
83
(
2
), pp.
209
220
.
13.
Bazant
,
Z. P.
, and
Schell
,
W. F.
,
1993
, “
Fatigue Fracture of High-Strength Concrete and Size Effect
,”
ACI Mater. J.
,
90
(
9–10
), pp.
472
472
.
14.
Ravi Chandran
,
K. S.
,
2019
, “
Fracture Mechanics Analysis of Generalized Compact Tension Specimen Geometry Using the Mechanics of Net-Section
,”
Eng. Fract. Mech.
,
222
(
12
), p.
106703
.
15.
Ravi Chandran
,
K. S.
,
2018
, “
Fatigue Crack Growth in Bending: Successful Correlation of Mean Stress (Stress Ratio) Effects Using the Change in Net-Section Strain Energy
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
12
), pp.
2566
2576
.
16.
Ravi Chandran
,
K. S.
, and
Dorman
,
S. E. G.
,
2021
, “
The Nature of Specimen-Size-Effect on Fatigue Crack Growth and Net-Section Fracture Mechanics Approach to Extract the Size-Independent Behavior
,”
Int. J. Fatigue
,
145
(
4
), p.
106088
.
17.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
221
(
582–593
), pp.
163
198
.
18.
Griffith
,
A. A.
,
1924
, “
The Theory of Rupture
,”
Proc. First Int. Cong. App. Mech.
,
Delft, The Netherlands
, pp.
55
63
.
19.
Knott
,
J. F.
,
1973
,
Fundamentals of Fracture Mechanics
,
Butterworths
,
London
, pp.
100
101
.
20.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
,
1984
,
Mechanics of Materials
, 2nd SI Ed.,
PWS ENGINEERING
,
Boston, MA
, pp.
88
89
.
21.
Rice
,
J. R.
,
1967
, “
Discussion: Stresses in an Infinite Strip Containing a Semi-infinite Crack (Knauss, WG, 1966, ASME J. Appl. Mech., 33, pp. 356–362)
,”
Trans. ASME Ser. E: J. Appl. Mech.
,
34
(
1
), pp.
248
249
.
22.
John
,
R.
, and
Rigling
,
B.
,
1998
, “
Effect of Height to Width Ratio on K and CMOD Solutions for a Single Edge Cracked Geometry With Clamped Ends
,”
Eng. Fract. Mech.
,
60
(
2
), pp.
147
156
.
23.
Torvik
,
P. J.
,
1979
, “
On the Determination of Stresses, Displacements, and Stress-Intensity Factors in Edge-Cracked Sheets With Mixed Boundary Conditions
,”
ASME J. Appl. Mech.
,
46
(
3
), pp.
611
617
.
24.
Fett
,
T.
, and
Bahr
,
H. A.
,
1999
, “
Mode I Stress Intensity Factors and Weight Functions for Short Plates Under Different Boundary Conditions
,”
Eng. Fract. Mech.
,
62
(
6
), pp.
593
606
.
25.
Ravi Chandran
,
K. S.
,
2017
, “
Insight on Physical Meaning of Finite-Width-Correction Factors in Stress Intensity Factor (K) Solutions of Fracture Mechanics
,”
Eng. Fract. Mech.
,
186
(
12
), pp.
399
409
.
26.
Ravi Chandran
,
K. S.
,
2017
, “
New Approach for the Correlation of Fatigue Crack Growth in Metals on the Basis of the Change in Net-Section Strain Energy
,”
Acta Mater.
,
129
(
6
), pp.
439
449
.
27.
Ravi Chandran
,
K. S.
,
Cao
,
F.
, and
Newman
,
Jr J. C.
,
2016
, “
Fatigue Crack Growth in Miniature Specimens: The Equivalence of ΔK-Correlation and That Based on the Change in Net-Section Strain Energy Density
,”
Scr. Mater.
,
122
(
9
), pp.
18
21
.
28.
Ravi Chandran
,
K. S.
,
2017
, “
A New Approach to the Mechanics of Fatigue Crack Growth in Metals: Correlation of Mean Stress (Stress Ratio) Effects Using the Change in Net-Section Strain Energy
,”
Acta Mater.
,
135
(
8
), pp.
201
214
.
You do not currently have access to this content.