Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Critical velocities of a single-layer tube of a transversely isotropic material and a two-layer composite tube consisting of two perfectly bonded cylindrical layers of dissimilar transversely isotropic materials are analytically determined using the potential function method of Elliott in three-dimensional (3D) elasticity. The displacement and stress components in each transversely isotropic layer of the tube subjected to a uniform internal pressure moving at a constant velocity are derived in integral forms by applying the Fourier transform method. The solution includes those for a tube composed of two dissimilar cubic or isotropic materials as special cases. In addition, it is shown that the model for the two-layer composite tube can be reduced to that for the single-layer tube. Closed-form expressions for four critical velocities are derived for the single-layer tube. The lowest critical velocity is obtained from plotting the velocity curve and finding the inflection point for both the single-layer and two-layer composite tubes. To illustrate the newly developed models, two cases are studied as examples—one for a single-layer isotropic steel tube and the other for a two-layer composite tube consisting of an isotropic steel inner layer and a transversely isotropic glass-epoxy outer layer. The numerical values of the lowest critical velocity predicted by the new 3D elasticity-based models are obtained and compared with those given by existing models based on thin- and thick-shell theories.

References

1.
Simkins
,
T. E.
,
Pflegl
,
G. A.
, and
Stilson
,
E. G.
,
1993
, “
Dynamic Strains in a 60 mm Gun Tube: An Experimental Study
,”
J. Sound Vib.
,
168
(
3
), pp.
549
557
.
2.
Simkins
,
T. E.
,
1994
, “
Amplification of Flexural Waves in Gun Tubes
,”
J. Sound Vib.
,
172
(
2
), pp.
145
154
.
3.
Gao
,
X.-L.
, and
Littlefield
,
A. G.
,
2022
, “
Critical Velocities and Displacements of Anisotropic Tubes Under a Moving Pressure
,”
Math. Mech. Solids
,
27
(
12
), pp.
2662
2688
.
4.
Mangrum
,
E.
, and
Burns
,
J. J.
,
1979
, “
Orthotropic Cylindrical Shells Under Dynamic Loading
,”
ASME J. Mech. Des.
,
101
(
2
), pp.
322
329
.
5.
Simkins
,
T. E.
,
1995
, “
The Influence of Transient Flexural Waves on Dynamic Strains in Cylinders
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
262
265
.
6.
Hölzle
,
J.
,
2003
, “
Influence of the ‘Critical Velocity’ Phenomenon on Chromium-Plated Gun Barrels
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
352
354
.
7.
Nechitailo
,
N. V.
, and
Lewis
,
K. B.
,
2006
, “
Critical Velocity for Rails in Hypervelocity Launchers
,”
Int. J. Impact Eng.
,
33
(
1–12
), pp.
485
495
.
8.
Sofiyev
,
A. H.
,
2010
, “
Dynamic Response of an FGM Cylindrical Shell Under Moving Loads
,”
Compos. Struct.
,
93
(
1
), pp.
58
66
.
9.
Eipakchi
,
H.
, and
Nasrekani
,
F. M.
,
2020
, “
Vibrational Behavior of Composite Cylindrical Shells With Auxetic Honeycombs Core Layer Subjected to a Moving Pressure
,”
Compos. Struct.
,
254
, p.
112847
.
10.
Eipakchi
,
H.
,
Nasrekani
,
F. M.
, and
Ahmadi
,
S.
,
2020
, “
An Analytical Approach for the Vibration Behavior of Viscoelastic Cylindrical Shells Under Internal Moving Pressure
,”
Acta Mech.
,
231
(
8
), pp.
3405
3418
.
11.
Akbarov
,
S. D.
,
Mehdiyev
,
M. A.
, and
Zeynalov
,
A. M.
,
2021
, “
Dynamics of the Moving Ring-Load Acting in the Interior of the Bi-Layered Hollow Cylinder With Imperfect Contact Between the Layers
,”
TWMS J. Pure Appl. Math.
,
12
(
2
), pp.
223
242
.
12.
Prisekin
,
V. L.
,
1961
, “
The Stability of a Cylindrical Shell Subjected to a Moving Load
,”
Mekhanika i Mashinostroenie
,
5
, pp.
133
134
.
13.
Jones
,
J. P.
, and
Bhuta
,
P. G.
,
1964
, “
Response of Cylindrical Shells to Moving Loads
,”
ASME J. Appl. Mech.
,
31
(
1
), pp.
105
111
.
14.
Tang
,
S.-C.
,
1965
, “
Dynamic Response of a Tube Under Moving Pressure
,”
J. Eng. Mech. Div.
,
91
(
5
), pp.
97
122
.
15.
Gao
,
X.-L.
,
2022
, “
Critical Velocities of Anisotropic Tubes Under a Moving Pressure Incorporating Transverse Shear and Rotary Inertia Effects
,”
Acta Mech.
,
233
(
9
), pp.
3511
3534
.
16.
Chonan
,
S.
,
1981
, “
Moving Load on a Two-Layered Cylindrical Shell With Imperfect Bonding
,”
J. Acoust. Soc. Am.
,
69
(
4
), pp.
1015
1020
.
17.
Simkins
,
T. E.
,
1993
, “Dynamic Strains in an Orthotropically-Wrapped Gun Tube. Part I—Theoretical,” Technical Report ARCCB-TR-93026, U.S. Army Armament Research, Development and Engineering Center, Benét Laboratories, Watervliet, NY.
18.
Gao
,
X.-L.
,
2023
, “
Critical Velocities of a Two-Layer Composite Tube Under a Moving Internal Pressure
,”
Acta Mech.
,
234
(
5
), pp.
2021
2043
.
19.
Gao
,
X.-L.
,
2023
, “
Critical Velocities of a Two-Layer Composite Tube Incorporating the Effects of Transverse Shear, Rotary Inertia and Material Anisotropy
,”
Z. Angew. Math. Phys.
,
74
(
4
), p.
166
.
20.
Gao
,
X.-L.
,
2024
, “
Critical Velocities of a Three-Layer Composite Tube Incorporating the Rotary Inertia and Material Anisotropy
,”
Math. Mech. Solids
. (in press).https://doi.dox.org/10.1177/10812865241250015
21.
Mirsky
,
I.
, and
Herrmann
,
G.
,
1958
, “
Axially Symmetric Motions of Thick Cylindrical Shells
,”
ASME J. Appl. Mech.
,
25
(
1
), pp.
97
102
.
22.
Bert
,
C. W.
, and
Birman
,
V.
,
1988
, “
Parametric Instability of Thick, Orthotropic, Circular Cylindrical Shells
,”
Acta Mech.
,
71
(
1–4
), pp.
61
76
.
23.
Chandrashekhara
,
K.
, and
Kumar
,
B. S.
,
1990
, “
Analysis of a Thick Transversely Isotropic Circular Cylindrical Shell Subjected to Asymmetric Load
,”
Acta Mech.
,
84
(
1–4
), pp.
63
75
.
24.
Zukas
,
J. A.
, and
Vinson
,
J. R.
,
1971
, “
Laminated Transversely Isotropic Cylindrical Shells
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
400
407
.
25.
Zhang
,
G. Y.
,
Gao
,
X.-L.
, and
Littlefield
,
A. G.
,
2021
, “
A Non-classical Model for Circular Cylindrical Thin Shells Incorporating Microstructure and Surface Energy Effects
,”
Acta Mech.
,
232
(
6
), pp.
2225
2248
.
26.
Zhang
,
G. Y.
, and
Gao
,
X.-L.
,
2021
, “
A Non-classical Model for First-Order Shear Deformation Circular Cylindrical Thin Shells Incorporating Microstructure and Surface Energy Effects
,”
Math. Mech. Solids
,
26
(
9
), pp.
1294
1319
.
27.
Steigmann
,
D. J.
,
Bîrsan
,
M.
, and
Shirani
,
M.
,
2023
,
Lecture Notes on the Theory of Plates and Shells: Classical and Modern Developments
,
Springer
,
Cham, Switzerland
.
28.
Elliott
,
H. A.
,
1948
, “
Three-Dimensional Stress Distributions in Hexagonal Aeolotropic Crystals
,”
Math. Proc. Cambridge Philos. Soc.
,
44
(
4
), pp.
522
533
.
29.
Green
,
A. E.
, and
Zerna
,
W.
,
1968
,
Theoretical Elasticity
, 2nd ed.,
Oxford University Press
,
Oxford, UK
.
30.
Ding
,
H.-J.
,
Chen
,
W. Q.
, and
Zhang
,
L.
,
2006
,
Elasticity of Transversely Isotropic Materials
,
Springer
,
Dordrecht, The Netherlands
.
31.
Mirsky
,
I.
,
1965
, “
Wave Propagation in Transversely Isotropic Circular Cylinders Part I: Theory
,”
J. Acoust. Soc. Am.
,
37
(
6
), pp.
1016
1021
.
32.
Gao
,
X.-L.
, and
Mao
,
C. L.
,
2014
, “
Solution of the Contact Problem of a Rigid Conical Frustum Indenting a Transversely Isotropic Elastic Half-Space
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041007
.
33.
Zhang
,
G. Y.
,
Qu
,
Y. L.
,
Gao
,
X.-L.
, and
Jin
,
F.
,
2020
, “
A Transversely Isotropic Magneto-electro-elastic Timoshenko Beam Model Incorporating Microstructure and Foundation Effects
,”
Mech. Mater.
,
149
, p.
103412
.
34.
Shen
,
W.
,
Zhang
,
G.
,
Gu
,
S.
, and
Cong
,
Y.
,
2022
, “
A Transversely Isotropic Magneto-electro-elastic Circular Kirchhoff Plate Model Incorporating Microstructure Effect
,”
Acta Mech. Sol. Sin.
,
35
(
2
), pp.
185
197
.
35.
Jin
,
C.
,
Salviato
,
M.
,
Li
,
W.
, and
Cusatis
,
G.
,
2017
, “
Elastic Microplane Formulation for Transversely Isotropic Materials
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011001
.
36.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2016
, “
On the Accuracy and Fitting of Transversely Isotropic Material Models
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
554
566
.
37.
Kulkarni
,
S.
,
Gao
,
X.-L.
,
Horner
,
S. E.
,
Mortlock
,
R. F.
, and
Zheng
,
J. Q.
,
2016
, “
A Transversely Isotropic Visco-hyperelastic Constitutive Model for Soft Tissues
,”
Math. Mech. Solids
,
21
(
6
), pp.
747
770
.
38.
Chen
,
W. T.
,
1966
, “
On Some Problems in Transversely Isotropic Elastic Materials
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
347
355
.
39.
Ding
,
H.-J.
, and
Xu
,
B.-H.
,
1988
, “
General Solutions of Axisymmetric Problems in Transversely Isotropic Body
,”
Appl. Math. Mech.
,
9
(
2
), pp.
143
151
.
40.
Wang
,
W.
, and
Shi
,
M. X.
,
1998
, “
On the General Solutions of Transversely Isotropic Elasticity
,”
Int. J. Solids Struct.
,
35
(
25
), pp.
3283
3297
.
41.
Chau
,
K. T.
,
2018
,
Theory of Differential Equations in Engineering and Mechanics
,
CRC Press
,
Boca Raton, FL
.
42.
Bower
,
A. F.
,
2009
,
Applied Mechanics of Solids
,
CRC Press
,
Boca Raton, FL
.
43.
Ai
,
L.
, and
Gao
,
X.-L.
,
2017
, “
Micromechanical Modeling of 3-D Printable Interpenetrating Phase Composites With Tailorable Effective Elastic Properties Including Negative Poisson’s Ratio
,”
J. Micromech. Mol. Phys.
,
2
(
4
), p.
1750015
.
44.
Kasano
,
H.
,
Matsumoto
,
H.
, and
Nakahara
,
I.
,
1980
, “
A Transversely Isotropic Circular Cylinder Under Concentrated Loads
,”
Bull. JSME
,
23
(
176
), pp.
170
176
.
You do not currently have access to this content.