Abstract

In this paper, we develop a nonlinear mixed finite element method for flexoelectric semiconductors and analyze the mechanically tuned redistributions of free carriers and electric currents through flexoelectric polarization in typical structures. We first present a macroscopic theory for flexoelectric semiconductors by combining flexoelectricity and nonlinear drift-diffusion theory. To use C0 continuous elements, we derive an incremental constrained weak form by introducing Langrage multipliers, in which the kinematic constraints between the displacement and its gradient are guaranteed. Based on the weak form, we established a mixed C0 continuous nine-node quadrilateral finite element as well as an iterative process for solving nonlinear boundary-value problems. The accuracy and convergence of the proposed element are validated by comparing linear finite element method results against analytical solutions for the bending of a beam. Finally, the nonlinear element method is applied to more complex problems, such as a circular ring, a plate with a hole, and an isosceles trapezoid. Results indicate that mechanical loads and doping levels have distinct influences on electric properties.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Li
,
Q.
,
Li
,
S.
,
Zhou
,
L.
,
Cao
,
X.
,
Lan
,
Y.
,
Xu
,
X.
,
Huang
,
Y.
, et al
,
2023
, “
Optimal Design Towards High Performance of Sandwich Flexible Piezoelectric Energy Harvesters
,”
ASME J. Appl. Mech.
,
90
(
6
), p.
061007
.
2.
Qi
,
L.
,
Shi
,
Y.
,
Hunag
,
C.
,
Li
,
Z.
, and
Gao
,
C.-F.
,
2021
, “
Electrical-Driven Delamination of Flexible Piezoelectric System and Its Applications in Surface Energy Testing
,”
ASME J. Appl. Mech.
,
88
(
6
), p.
061007
.
3.
Jamneala
,
T.
,
Bradley
,
P.
,
Shirakawa
,
A.
,
Thalhammer
,
R. K.
, and
Ruby
,
R.
,
2016
, “
An Investigation of Lateral Modes in FBAR Resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
63
(
5
), pp.
778
789
.
4.
Li
,
N.
,
Qian
,
Z.
, and
Yang
,
J.
,
2017
, “
Two-Dimensional Equations for Piezoelectric Thin-Film Acoustic Wave Resonators
,”
Int. J. Solids Struct.
,
110–111
, pp.
170
177
.
5.
Yang
,
J.
,
2005
, “
A Review of Analyses Related to Vibrations of Rotating Piezoelectric Bodies and Gyroscopes
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
5
), pp.
698
706
.
6.
Yang
,
J.
,
2006
,
Analysis of Piezoelectric Devices
,
World Scientific
,
Singapore
.
7.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
8.
Shen
,
S.
, and
Hu
,
S.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
.
9.
Liu
,
Y.
,
Chen
,
L.
,
Wang
,
B.
,
Yang
,
S.
, and
Sharma
,
P.
,
2021
, “
Tuning Crumpled Sheets for an Enhanced Flexoelectric Response
,”
ASME J. Appl. Mech.
,
89
(
1
), p.
011011
.
10.
Qu
,
Y. L.
,
Guo
,
Z. W.
,
Zhang
,
G. Y.
,
Gao
,
X.-L.
, and
Jin
,
F.
,
2022
, “
A New Model for Circular Cylindrical Kirchhoff–Love Shells Incorporating Microstructure and Flexoelectric Effects
,”
ASME J. Appl. Mech.
,
89
(
12
), p.
121010
.
11.
Wang
,
Z. L.
, and
Song
,
J.
,
2006
, “
Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
,”
Science
,
312
(
5771
), pp.
242
246
.
12.
Jiang
,
X.
,
Huang
,
W.
, and
Zhang
,
S.
,
2013
, “
Flexoelectric Nano-generator: Materials, Structures and Devices
,”
Nano Energy
,
2
(
6
), pp.
1079
1092
.
13.
Hickernell
,
F. S.
,
2005
, “
The Piezoelectric Semiconductor and Acoustoelectronic Device Development in the Sixties
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
5
), pp.
737
745
.
14.
Wang
,
Z. L.
,
2012
,
Piezotronics and Piezo-phototronics
,
Springer
,
New York
.
15.
Luo
,
Y.
,
Zhang
,
C.
,
Chen
,
W.
, and
Yang
,
J.
,
2019
, “
Piezotronic Effect of a Thin Film With Elastic and Piezoelectric Semiconductor Layers Under a Static Flexural Loading
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051003
.
16.
Qu
,
Y.
,
Jin
,
F.
, and
Yang
,
J.
,
2022
, “
Electromechanical Interactions in a Composite Plate With Piezoelectric Dielectric and Nonpiezoelectric Semiconductor Layers
,”
Acta Mech.
,
233
(
9
), pp.
3795
3812
.
17.
Qu
,
Y.
,
Pan
,
E.
,
Zhu
,
F.
,
Jin
,
F.
, and
Roy
,
A. K.
,
2023
, “
Modeling Thermoelectric Effects in Piezoelectric Semiconductors: New Fully Coupled Mechanisms for Mechanically Manipulated Heat Flux and Refrigeration
,”
Int. J. Eng. Sci.
,
182
, p.
103775
.
18.
Gokhale
,
V. J.
, and
Rais-Zadeh
,
M.
,
2014
, “
Phonon–Electron Interactions in Piezoelectric Semiconductor Bulk Acoustic Wave Resonators
,”
Sci. Rep.
,
4
(
1
), p.
5617
.
19.
Xu
,
C.
,
Wei
,
P.
,
Wei
,
Z.
, and
Guo
,
X.
,
2023
, “
Rayleigh Wave in Layered Piezoelectric Semiconductor With Consideration of PN Junction Effects
,”
Math. Mech. Solids
,
28
(
8
), pp.
1817
1833
.
20.
Wang
,
L.
,
Liu
,
S.
,
Feng
,
X.
,
Zhang
,
C.
,
Zhu
,
L.
,
Zhai
,
J.
,
Qin
,
Y.
, and
Wang
,
Z. L.
,
2020
, “
Flexoelectronics of Centrosymmetric Semiconductors
,”
Nat. Nanotechnol.
,
15
(
8
), pp.
661
667
.
21.
Qu
,
Y.
,
Jin
,
F.
, and
Yang
,
J.
,
2021
, “
Buckling of Flexoelectric Semiconductor Beams
,”
Acta Mech.
,
232
(
7
), pp.
2623
2633
.
22.
Qu
,
Y.
,
Jin
,
F.
, and
Yang
,
J.
,
2022
, “
Bending of a Flexoelectric Semiconductor Plate
,”
Acta Mech. Sol. Sin.
,
35
(
3
), pp.
434
445
.
23.
Sun
,
L.
,
Zhu
,
L.
,
Zhang
,
C.
,
Chen
,
W.
, and
Wang
,
Z.
,
2021
, “
Mechanical Manipulation of Silicon-Based Schottky Diodes Via Flexoelectricity
,”
Nano Energy
,
83
, p.
105855
.
24.
Ren
,
C.
,
Wang
,
K. F.
, and
Wang
,
B. L.
,
2021
, “
Analysis of Piezoelectric PN Homojunction and Heterojunction Considering Flexoelectric Effect and Strain Gradient
,”
J. Phys. D: Appl. Phys.
,
54
(
49
), p.
495102
.
25.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2014
, “
Computational Evaluation of the Flexoelectric Effect in Dielectric Solids
,”
J. Appl. Phys.
,
116
(
9
), p.
093502
.
26.
Thai
,
T. Q.
,
Rabczuk
,
T.
, and
Zhuang
,
X.
,
2018
, “
A Large Deformation Isogeometric Approach for Flexoelectricity and Soft Materials
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
718
739
.
27.
Zhuang
,
X.
,
Nguyen
,
B. H.
,
Nanthakumar
,
S. S.
,
Tran
,
T. Q.
,
Alajlan
,
N.
, and
Rabczuk
,
T.
,
2020
, “
Computational Modeling of Flexoelectricity—A Review
,”
Energies
,
13
(
6
), p.
1326
.
28.
Amanatidou
,
E.
, and
Aravas
,
N.
,
2002
, “
Mixed Finite Element Formulations of Strain-Gradient Elasticity Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
15
), pp.
1723
1751
.
29.
Mao
,
S.
,
Purohit
,
P. K.
, and
Aravas
,
N.
,
2016
, “
Mixed Finite-Element Formulations in Piezoelectricity and Flexoelectricity
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150879
.
30.
Deng
,
F.
,
Deng
,
Q.
,
Yu
,
W.
, and
Shen
,
S.
,
2017
, “
Mixed Finite Elements for Flexoelectric Solids
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081004
.
31.
Tian
,
X.
,
Sladek
,
J.
,
Sladek
,
V.
,
Deng
,
Q.
, and
Li
,
Q.
,
2021
, “
A Collocation Mixed Finite Element Method for the Analysis of Flexoelectric Solids
,”
Int. J. Solids Struct.
,
217–218
, pp.
27
39
.
32.
Tian
,
X.
,
Zhou
,
H.
,
Deng
,
Q.
,
Yan
,
Z.
,
Sladek
,
J.
, and
Sladek
,
V.
,
2024
, “
Modeling the Flexoelectric Effect in Semiconductors Via a Second-Order Collocation MFEM
,”
Int. J. Mech. Sci.
,
264
, p.
108837
.
33.
Li
,
Y.
,
Zhou
,
Q.
,
Wu
,
J.
,
Xu
,
J.
,
Shi
,
W.
,
Su
,
C.
,
Chen
,
D.
, and
Shao
,
Z.
,
2022
, “
Controllably Grown Single-Crystal Films as Flexoelectric Nanogenerators for Continuous Direct Current Output
,”
Npj Flex. Electron.
,
6
(
1
), p.
88
.
34.
Guo
,
D.
,
Guo
,
P.
,
Ren
,
L.
,
Yao
,
Y.
,
Wang
,
W.
,
Jia
,
M.
,
Wang
,
Y.
,
Wang
,
L.
,
Wang
,
Z. L.
, and
Zhai
,
J.
,
2023
, “
Silicon Flexoelectronic Transistors
,”
Sci. Adv.
,
9
(
10
), p.
eadd3310
.
35.
Zhao
,
M.
,
Yang
,
C.
,
Fan
,
C.
, and
Zhang
,
Q.
,
2020
, “
A Shooting Method for Nonlinear Boundary Value Problems in a Thermal Piezoelectric Semiconductor Plate
,”
Z. Angew. Math. Mech.
,
100
(
12
), p.
e201900302
.
36.
Zhao
,
M.
,
Zhang
,
Q.
, and
Fan
,
C.
,
2019
, “
An Efficient Iteration Approach for Nonlinear Boundary Value Problems in 2D Piezoelectric Semiconductors
,”
Appl. Math. Model.
,
74
, pp.
170
183
.
37.
Zhao
,
L.
,
Jin
,
F.
,
Shao
,
Z.
, and
Wang
,
W.
,
2023
, “
Nonlinear Analysis on Electrical Properties in a Bended Composite Piezoelectric Semiconductor Beam
,”
Appl. Math. Mech.-Engl. Ed.
,
44
(
12
), pp.
2039
2056
.
38.
Han
,
C.
,
Lu
,
C.
,
Zhao
,
M.
, and
Zhang
,
Q.
,
2023
, “
Nonlinear Finite Element Analysis of Electromechanical Behaviors in a Piezoelectric Semiconductor Beam
,”
Int. J. Non-Linear Mech.
,
149
, p.
104311
.
39.
Auld
,
B. A.
,
1973
,
Acoustic Fields and Waves in Solids
,
Рипол Классик
,
New York
.
40.
Pierret
,
R. F.
,
1996
,
Semiconductor Device Fundamentals
,
Pearson Education India
,
Uttar Pradesh, India
.
41.
Gao
,
X.-L.
, and
Park
,
S. K.
,
2007
, “
Variational Formulation of a Simplified Strain Gradient Elasticity Theory and Its Application to a Pressurized Thick-Walled Cylinder Problem
,”
Int. J. Solids Struct.
,
44
(
22
), pp.
7486
7499
.
42.
Yang
,
J.
,
2020
,
Analysis of Piezoelectric Semiconductor Structures
,
Springer
,
New York
.
43.
Reddy
,
J. N.
,
2019
,
Introduction to the Finite Element Method
,
McGraw-Hill Education
,
New York
.
44.
Wu
,
H.-P.
,
Shang
,
Y.
,
Cen
,
S.
, and
Li
,
C.-F.
,
2023
, “
Penalty C0 8-Node Quadrilateral and 20-Node Hexahedral Elements for Consistent Couple Stress Elasticity Based on the Unsymmetric Finite Element Method
,”
Eng. Anal. Bound. Elem.
,
147
, pp.
302
319
.
45.
Wang
,
X.
,
2003
,
Finite Element Method
,
Tsinghua University Press
,
Beijing
.
46.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Klaus-Jurgen Bathe
,
New Jersey
.
47.
Lazar
,
M.
,
Maugin
,
G. A.
, and
Aifantis
,
E. C.
,
2006
, “
Dislocations in Second Strain Gradient Elasticity
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1787
1817
.
48.
Sze
,
S. M.
,
Li
,
Y.
, and
Ng
,
K. K.
,
2021
,
Physics of Semiconductor Devices
,
John Wiley & Sons
,
New York
.
49.
Soh
,
A.-K.
, and
Wanji
,
C.
,
2004
, “
Finite Element Formulations of Strain Gradient Theory for Microstructures and the C0–1 Patch Test
,”
Int. J. Numer. Methods Eng.
,
61
(
3
), pp.
433
454
.
You do not currently have access to this content.