Abstract

In this study, thin-walled tubes were circumferentially strengthened by plasticity ball burnishing of critical locations determined from buckling mode analysis. Axial crush test results revealed that the surface-treated (ST) tubes increased localized yield strength, attained superior crashworthiness performance, and triggered predictable deformation modes according to the buckling modes of the tubes. Numerical analysis was performed and successfully validated with the experiment at 90% prediction accuracy. The treated tube ST-4 with the 12th buckling mode outperformed a conventional tube with an increase in specific energy absorption (SEA) and crush force efficiency (CFE) by up to 70% while sustaining a low increase in initial peak force (IPF). Furthermore, the tube demonstrated a greater rate of energy dissipation compared to tubes with conventional surface-treated patterns at the same level of surface-treated area. The crashworthiness performance improved as the surface-treated area ratio increased. A theoretical model was developed for the surface-treated tube based on fundamental deformation kinematics, predicting mean crushing force and total energy absorption with acceptable accuracy. The findings strongly suggest that the proposed surface-enhanced tubes have great potential to be used as energy-absorbing structures in crashworthiness applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Pandarkar
,
A.
,
Goel
,
M. D.
, and
Hora
,
M. S.
,
2016
, “
Axial Crushing of Hollow and Foam Filled Tubes: An Overview
,”
Sādhanā
,
41
(
8
), pp.
909
921
.
2.
Abeba Tsegay
,
T.
,
2019
, “
Analysis on a Composite B-Pillar Crashworthiness and Occupant Safety for Side Impact in Sedan Car
,”
Ph.D. thesis
,
ASTU
.
3.
Sun
,
G.
,
Pang
,
T.
,
Xu
,
C.
,
Zheng
,
G.
, and
Song
,
J.
,
2017
, “
Energy Absorption Mechanics for Variable Thickness Thin-Walled Structures
,”
Thin-Walled Struct.
,
118
, pp.
214
228
.
4.
Marzbanrad
,
J.
, and
Ebrahimi
,
M. R.
,
2011
, “
Multi-Objective Optimization of Aluminum Hollow Tubes for Vehicle Crash Energy Absorption Using a Genetic Algorithm and Neural Networks
,”
Thin-Walled Struct.
,
49
(
12
), pp.
1605
1615
.
5.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
727
734
.
6.
Taghipoor
,
H.
,
Ghiaskar
,
A.
, and
Shavalipour
,
A.
,
2021
, “
Crashworthiness Performance of Thin-Walled, Square Tubes With Circular Hole Discontinuities Under High-Speed Impact Loading
,”
Int. J. Crashworthiness
,
27
, pp.
1
13
.
7.
Altin
,
M.
,
Kılınçkaya
,
Ü
,
Acar
,
E.
, and
Güler
,
M. A.
,
2019
, “
Investigation of Combined Effects of Cross Section, Taper Angle and Cell Structure on Crashworthiness of Multi-Cell Thin-Walled Tubes
,”
Int. J. Crashworthiness
,
24
(
2
), pp.
121
136
.
8.
Baykasoğlu
,
C.
,
Baykasoğlu
,
A.
, and
Tunay Çetin
,
M.
,
2019
, “
A Comparative Study on Crashworthiness of Thin-Walled Tubes With Functionally Graded Thickness Under Oblique Impact Loadings
,”
Int. J. Crashworthiness
,
24
(
4
), pp.
453
471
.
9.
Eyvazian
,
A.
,
Habibi
,
M. K.
,
Hamouda
,
A. M.
, and
Hedayati
,
R.
,
2014
, “
Axial Crushing Behavior and Energy Absorption Efficiency of Corrugated Tubes
,”
Mater. Des. (1980–2015)
,
54
, pp.
1028
1038
.
10.
Yang
,
K.
,
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
, and
Xie
,
Y. M.
,
2016
, “
Energy Absorption of Thin-Walled Tubes With Pre-Folded Origami Patterns: Numerical Simulation and Experimental Verification
,”
Thin-Walled Struct.
,
103
, pp.
33
44
.
11.
Dong
,
J.
,
Ye
,
G.
,
Wang
,
Y.
,
Jin
,
F.
, and
Fan
,
H.
,
2021
, “
Design, Manufacture and Crushing Behaviors of Buckling-Inspired Auxetic Meta-Lattice Structures
,”
Int. J. Smart Nano Mater.
,
12
(
4
), pp.
491
510
.
12.
Dong
,
J.
,
Li
,
W.
, and
Fan
,
H.
,
2021
, “
Axial Crushing Behaviors of Buckling Induced Triangular Tubular Structures
,”
Mater. Des.
,
201
, p.
109513
.
13.
Dong
,
J.
, and
Fan
,
H.
,
2022
, “
Crushing Behaviors of Buckling-Oriented Hexagonal Lattice Structures
,”
Mech. Mater.
,
165
, p.
104160
.
14.
Bourebia
,
M.
,
Hamadache
,
H.
,
Lakhdar
,
L.
,
Mentouri
,
Z.
,
Kamila
,
D.
,
Tarek
,
H.
, and
Ahlem
,
T.
,
2021
, “
Effect of Ball Burnishing Process on Mechanical Properties and Impact Behavior of S355JR Steel
,”
Int. J. Adv. Manuf. Technol.
,
116
(
3
), pp.
1373
1384
.
15.
Moon
,
J. H.
,
Baek
,
S. M.
,
Lee
,
S. G.
,
Seong
,
Y.
,
Amanov
,
A.
,
Lee
,
S.
, and
Kim
,
H. S.
,
2019
, “
Effects of Residual Stress on the Mechanical Properties of Copper Processed Using Ultrasonic-Nanocrystalline Surface Modification
,”
Mater. Res. Lett.
,
7
(
3
), pp.
97
102
.
16.
Uddin
,
M.
,
Hall
,
C.
,
Santos
,
V.
,
Visalakshan
,
R.
,
Qian
,
G.
, and
Vasilev
,
K.
,
2021
, “
Synergistic Effect of Deep Ball Burnishing and HA Coating on Surface Integrity, Corrosion and Immune Response of Biodegradable AZ31B Mg Alloys
,”
Mater. Sci. Eng. C
,
118
, p.
111459
.
17.
Zhou
,
J.
,
Cui
,
K.
,
Xu
,
Z.
,
Sun
,
Z.
,
Guelorget
,
B.
, and
Retraint
,
D.
,
2022
, “
Modelling Residual Stress and Residual Work Hardening Induced by Surface Mechanical Attrition Treatment
,”
Int. J. Mech. Sci.
,
233
, p.
107688
.
18.
Wang
,
J.
,
Xue
,
Y.
,
Xu
,
D.
,
Zeng
,
Y.
,
Li
,
L.
,
Wang
,
Z.
, and
Jiang
,
F.
,
2023
, “
Effects of Layer-by-Layer Ultrasonic Impact Treatment on Microstructure and Mechanical Properties of 304 Stainless Steel Manufactured by Directed Energy Deposition
,”
Addit. Manuf.
,
68
, p.
103523
.
19.
Lv
,
J.
,
Luo
,
K.
,
Lu
,
H.
,
Wang
,
Z.
,
Liu
,
J.
, and
Lu
,
J.
,
2022
, “
Achieving High Strength and Ductility in Selective Laser Melting Ti-6Al-4 V Alloy by Laser Shock Peening
,”
J. Alloys Compd.
,
899
, p.
163335
.
20.
Tang
,
T.
,
Gao
,
Y.
,
Yao
,
L.
,
Li
,
Y.
, and
Lu
,
J.
,
2018
, “
Development of High-Performance Energy Absorption Component Based on the Structural Design and Nanocrystallization
,”
Mater. Des.
,
137
, pp.
214
225
.
21.
Liu
,
J.
,
Yang
,
X.
,
Liu
,
H.
, and
Yang
,
J.
,
2020
, “
Enhanced Energy Absorption Performance of Hexagonal Tubes by Local Surface Nano-Crystallization Technique
,”
Mech. Mater.
,
148
, p.
103508
.
22.
Xu
,
X.
,
Zhao
,
Z.
,
Wang
,
W.
,
Tong
,
Z.
,
Zhou
,
Z.
, and
Lim
,
C. W.
,
2021
, “
A Novel Design of Thin-Walled Energy Absorption Structures With Local Surface Nanocrystallization
,”
Thin-Walled Struct.
,
160
, p.
107337
.
23.
Wang
,
W.
,
Wang
,
Y.
,
Zhao
,
Z.
,
Tong
,
Z.
,
Xu
,
X.
, and
Lim
,
C. W.
,
2022
, “
Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes Under Axial Crushing
,”
Materials
,
15
(
16
), p.
5556
.
24.
Xu
,
K.
,
Li
,
T.
,
Guan
,
G.
,
Qu
,
J.
,
Zhao
,
Z.
, and
Xu
,
X.
,
2022
, “
Optimization Design of an Embedded Multi-Cell Thin-Walled Energy Absorption Structures With Local Surface Nanocrystallization
,”
Comput. Model. Eng. Sci.
,
130
(
2
), pp.
987
1002
.
25.
Wang
,
Z.
,
Zhang
,
J.
,
Li
,
Z.
, and
Shi
,
C.
,
2020
, “
On the Crashworthiness of Bio-Inspired Hexagonal Prismatic Tubes Under Axial Compression
,”
Int. J. Mech. Sci.
,
186
, p.
105893
.
26.
Tak
,
S. K.
, and
Iqbal
,
M. A.
,
2021
, “
Axial Compression Behaviour of Thin-Walled Metallic Tubes Under Quasi-Static and Dynamic Loading
,”
Thin-Walled Struct.
,
159
, p.
107261
.
27.
Fan
,
Z.
,
Lu
,
G.
, and
Liu
,
K.
,
2013
, “
Quasi-Static Axial Compression of Thin-Walled Tubes With Different Cross-Sectional Shapes
,”
Eng. Struct.
,
55
, pp.
80
89
.
28.
Xu
,
X.
,
Zhao
,
Z.
,
Zhou
,
Z.
,
Wang
,
W.
,
Tong
,
Z.
, and
Lim
,
C. W.
,
2020
, “
Local Surface Nanocrystallization for Buckling-Resistant Thin-Walled Structures
,”
Int. J. Mech. Mater. Des.
,
16
(
4
), pp.
693
705
.
29.
Alexander
,
J. M.
,
1960
, “
An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading
,”
Q. J. Mech. Appl. Math.
,
13
(
1
), pp.
10
15
.
30.
Hayduk
,
R. J.
, and
Wierzbicki
,
T.
,
1984
, “
Extensional Collapse Modes of Structural Members
,”
Comput. Struct.
,
18
(
3
), pp.
447
458
.
31.
Qiu
,
N.
,
Gao
,
Y.
,
Fang
,
J.
,
Feng
,
Z.
,
Sun
,
G.
, and
Li
,
Q.
,
2016
, “
Theoretical Prediction and Optimization of Multi-Cell Hexagonal Tubes Under Axial Crashing
,”
Thin-Walled Struct.
,
102
, pp.
111
121
.
32.
Wu
,
Y.
,
Fang
,
J.
,
Cheng
,
Z.
,
He
,
Y.
, and
Li
,
W.
,
2020
, “
Crashworthiness of Tailored-Property Multi-Cell Tubular Structures Under Axial Crushing and Lateral Bending
,”
Thin-Walled Struct.
,
149
, p.
106640
.
33.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
.
34.
Abramowicz
,
W.
, and
Jones
,
N.
,
1986
, “
Dynamic Progressive Buckling of Circular and Square Tubes
,”
Int. J. Impact Eng.
,
4
(
4
), pp.
243
270
.
You do not currently have access to this content.