Abstract

This study focuses on investigating hard-magnetic soft materials, characterized by magnetoactive polymers containing magnetically polarized particles as fillers. The research utilizes the Gent model of hyperelasticity to analyze the propagation of Lamb waves in a magnetically induced deformed compressible plate. In this investigation, we explore both finite deformations and incremental wave propagation in nonlinear hard-magnetic soft materials. The main objective is to formulate the elastic tensor and relevant wave equations within the framework of Lagrangian space. To assess the dispersion characteristics of the guided wave, the study introduces and discusses an extension of the semi-analytical finite element (SAFE) method. Using this numerical approach, the research further examines the effects of magnetic flux densities and its orientation with respect to wave propagation direction on the dispersion characteristics of the fundamental Lamb modes. The study starts by examining the limiting case of the neo-Hookean material model to explain such inherent dependencies. These dependencies are then further emphasized by including the strain-stiffening effect that the Gent material model describes. The research findings reveal the presence of a threshold applied magnetic flux, beyond which the Gent-type material may undergo a snap-through instability, resulting in changes in the dispersion characteristics of the fundamental symmetric Lamb mode.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Tardiff
,
J. L.
,
1999
, “
Magnetorheological Elastomers: Properties and Applications
,” Smart Structures and Materials 1999: Smart Materials Technologies, Vol. 3675, Newport Beach, CA, July 12,
SPIE
, pp.
131
138
.
2.
Li
,
Y.
,
Li
,
J.
,
Li
,
W.
, and
Du
,
H.
,
2014
, “
A State-of-the-Art Review on Magnetorheological Elastomer Devices
,”
Smart Mater. Struct.
,
23
(
12
), p.
123001
.
3.
Ginder
,
J.
,
Clark
,
S.
,
Schlotter
,
W.
, and
Nichols
,
M.
,
2002
, “
Magnetostrictive Phenomena in Magnetorheological Elastomers
,”
Int. J. Modern Phys. B
,
16
(
17n18
), pp.
2412
2418
.
4.
Ginder
,
J. M.
,
Schlotter
,
W. F.
, and
Nichols
,
M. E.
,
2001
, “
Magnetorheological Elastomers in Tunable Vibration Absorbers
,” Smart Structures and Materials 2001: Damping and Isolation, Vol. 4331, Newport Beach, CA, July 2,
SPIE
, pp.
103
110
.
5.
Opie
,
S.
, and
Yim
,
W.
,
2011
, “
Design and Control of a Real-Time Variable Modulus Vibration Isolator
,”
J. Intell. Mater. Syst. Struct.
,
22
(
2
), pp.
113
125
.
6.
Erb
,
R. M.
,
Libanori
,
R.
,
Rothfuchs
,
N.
, and
Studart
,
A. R.
,
2012
, “
Composites Reinforced in Three Dimensions by Using Low Magnetic Fields
,”
Science
,
335
(
6065
), pp.
199
204
.
7.
Tang
,
S.-Y.
,
Zhang
,
X.
,
Sun
,
S.
,
Yuan
,
D.
,
Zhao
,
Q.
,
Yan
,
S.
,
Deng
,
L.
, et al.,
2018
, “
Versatile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer Microactuators
,”
Adv. Funct. Mater.
,
28
(
8
), p.
1705484
.
8.
Zhao
,
Z.
,
Wang
,
C.
, and
Zhang
,
X. S.
,
2023
, “
Tuning Buckling Behaviors in Magnetically Active Structures: Topology Optimization and Experimental Validation
,”
J. Appl. Mech.
,
90
(
9
), p.
091006
.
9.
Tian
,
T.
,
Li
,
W.
, and
Deng
,
Y.
,
2011
, “
Sensing Capabilities of Graphite Based MR Elastomers
,”
Smart Mater. Struct.
,
20
(
2
), p.
025022
.
10.
Makarova
,
L. A.
,
Alekhina
,
Y. A.
,
Rusakova
,
T. S.
, and
Perov
,
N. S.
,
2016
, “
Tunable Properties of Magnetoactive Elastomers for Biomedical Applications
,”
Phys. Procedia
,
82
, pp.
38
45
.
11.
Jolly
,
M. R.
,
Carlson
,
J. D.
, and
Munoz
,
B. C.
,
1996
, “
A Model of the Behaviour of Magnetorheological Materials
,”
Smart Mater. Struct.
,
5
(
5
), p.
607
.
12.
Bertotti
,
G.
,
1998
,
Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
,
Gulf Professional Publishing
,
Torino, Italy
.
13.
Lum
,
G. Z.
,
Ye
,
Z.
,
Dong
,
X.
,
Marvi
,
H.
,
Erin
,
O.
,
Hu
,
W.
, and
Sitti
,
M.
,
2016
, “
Shape-Programmable Magnetic Soft Matter
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
41
), pp.
E6007
E6015
.
14.
Yan
,
D.
,
Pezzulla
,
M.
,
Cruveiller
,
L.
,
Abbasi
,
A.
, and
Reis
,
P. M.
,
2021
, “
Magneto-active Elastic Shells With Tunable Buckling Strength
,”
Nat. Commun.
,
12
(
1
), p.
2831
.
15.
Rahmati
,
A. H.
,
Jia
,
R.
,
Tan
,
K.
,
Liu
,
L.
,
Zhao
,
X.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2023
, “
Giant Magnetoelectricity in Soft Materials Using Hard Magnetic Soft Materials
,”
Mater. Today Phys.
,
31
, p.
100969
.
16.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
244
263
.
17.
Lu
,
L.
,
Sim
,
J.
, and
Zhao
,
R. R.
,
2023
, “
Mechanics of Hard-Magnetic Soft Materials: A Review
,”
Mech. Mater.
,
189
, p.
104874
.
18.
Rahmati
,
A. H.
,
Jia
,
R.
,
Tan
,
K.
,
Zhao
,
X.
,
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2023
, “
Theory of Hard Magnetic Soft Materials to Create Magnetoelectricity
,”
J. Mech. Phys. Solids
,
171
, p.
105136
.
19.
Cui
,
J.
,
Huang
,
T.-Y.
,
Luo
,
Z.
,
Testa
,
P.
,
Gu
,
H.
,
Chen
,
X.-Z.
,
Nelson
,
B. J.
, and
Heyderman
,
L. J.
,
2019
, “
Nanomagnetic Encoding of Shape-Morphing Micromachines
,”
Nature
,
575
(
7781
), pp.
164
168
.
20.
Hu
,
W.
,
Lum
,
G. Z.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-Scale Soft-Bodied Robot With Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
.
21.
Wang
,
L.
,
Zheng
,
D.
,
Harker
,
P.
,
Patel
,
A. B.
,
Guo
,
C. F.
, and
Zhao
,
X.
,
2021
, “
Evolutionary Design of Magnetic Soft Continuum Robots
,”
Proc. Natl. Acad. Sci. U.S.A.
,
118
(
21
), p.
e2021922118
.
22.
Sim
,
J.
, and
Zhao
,
R. R.
,
2024
, “
Magneto-mechanical Metamaterials: A Perspective
,”
ASME J. Appl. Mech.
,
91
(
3
), p.
031004
.
23.
Ning
,
S.
,
Chu
,
D.
,
Yang
,
F.
,
Jiang
,
H.
,
Liu
,
Z.
, and
Zhuang
,
Z.
,
2021
, “
Characteristics of Band Gap and Low-Frequency Wave Propagation of Mechanically Tunable Phononic Crystals With Scatterers in Periodic Porous Elastomeric Matrices
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051001
.
24.
Padmanabhan
,
S.
,
Alam
,
Z.
, and
Sharma
,
A. K.
,
2024
, “
Tunable Anti-plane Wave Bandgaps in 2d Periodic Hard-Magnetic Soft Composites
,”
Int. J. Mech. Sci.
,
261
, p.
108686
.
25.
Alam
,
Z.
,
Padmanabhan
,
S.
, and
Sharma
,
A. K.
,
2023
, “
Magnetically Tunable Longitudinal Wave Band Gaps in Hard-Magnetic Soft Laminates
,”
Int. J. Mech. Sci.
,
249
, p.
108262
.
26.
Piranda
,
B.
,
Chodkiewicz
,
P.
,
Hołobut
,
P.
,
Bordas
,
S. P.
,
Bourgeois
,
J.
, and
Lengiewicz
,
J.
,
2021
, “
Distributed Prediction of Unsafe Reconfiguration Scenarios of Modular Robotic Programmable Matter
,”
IEEE Trans. Rob.
,
37
(
6
), pp.
2226
2233
.
27.
Nandan
,
S.
,
Sharma
,
D.
, and
Sharma
,
A. K.
,
2023
, “
Viscoelastic Effects on the Nonlinear Oscillations of Hard-Magnetic Soft Actuators
,”
ASME J. Appl. Mech.
,
90
(
6
), p.
061001
.
28.
Nagal
,
N.
,
Srivastava
,
S.
,
Pandey
,
C.
,
Gupta
,
A.
, and
Sharma
,
A. K.
,
2022
, “
Alleviation of Residual Vibrations in Hard-Magnetic Soft Actuators Using a Command-Shaping Scheme
,”
Polymers
,
14
(
15
), p.
3037
.
29.
Nandan
,
S.
,
Sharma
,
D.
, and
Sharma
,
A. K.
,
2023
, “
Dynamic Modeling of Hard-Magnetic Soft Actuators: Unraveling the Role of Polymer Chain Entanglements, Crosslinks, and Finite Extensibility
,”
J. Magn. Magn. Mater.
,
587
, p.
171237
.
30.
Truesdell
,
C.
, and
Toupin
,
R.
,
1960
,
The Classical Field Theories
,
Springer
,
Berlin/Heidelberg
.
31.
Dorfmann
,
A.
, and
Ogden
,
R.
,
2004
, “
Nonlinear Magnetoelastic Deformations
,”
Q. J. Mech. Appl. Math.
,
57
(
4
), pp.
599
622
.
32.
Bustamante
,
R.
,
Dorfmann
,
A.
, and
Ogden
,
R.
,
2006
, “
Universal Relations in Isotropic Nonlinear Magnetoelasticity
,”
Q. J. Mech. Appl. Math.
,
59
(
3
), pp.
435
450
.
33.
Destrade
,
M.
, and
Ogden
,
R. W.
,
2011
, “
On Magneto-acoustic Waves in Finitely Deformed Elastic Solids
,”
Math. Mech. Solids
,
16
(
6
), pp.
594
604
.
34.
Haldar
,
K.
,
Kiefer
,
B.
, and
Menzel
,
A.
,
2016
, “
Finite Element Simulation of Rate-Dependent Magneto-active Polymer Response
,”
Smart Mater. Struct.
,
25
(
10
), p.
104003
.
35.
Metsch
,
P.
,
Kalina
,
K. A.
,
Spieler
,
C.
, and
Kästner
,
M.
,
2016
, “
A Numerical Study on Magnetostrictive Phenomena in Magnetorheological Elastomers
,”
Comput. Mater. Sci.
,
124
, pp.
364
374
.
36.
Lucarini
,
S.
,
Hossain
,
M.
, and
Garcia-Gonzalez
,
D.
,
2022
, “
Recent Advances in Hard-Magnetic Soft Composites: Synthesis, Characterisation, Computational Modelling, and Applications
,”
Compos. Struct.
,
279
, p.
114800
.
37.
Hirao
,
M.
,
Fukuoka
,
H.
, and
Hori
,
K.
,
1981
, “
Acoustoelastic Effect of Rayleigh Surface Wave in Isotropic Material
,”
J. Appl. Mech.
,
48
(
1
), p.
119
.
38.
Joglekar
,
D.
,
2022
, “
Scattering of the Fundamental Lamb Modes in Bent Metallic Plates
,”
ASME J. Appl. Mech.
,
89
(
12
), p.
121004
.
39.
Gangwar
,
A. S.
, and
Joglekar
,
D. M.
,
2024
, “
Probabilistic Bayesian Approach for Delamination Localization in GFRP Composites Using Nonlinear Guided Waves
,”
ASME J. Appl. Mech.
,
91
(
3
), p.
031001
.
40.
Chen
,
F.
, and
Wilcox
,
P. D.
,
2007
, “
The Effect of Load on Guided Wave Propagation
,”
Ultrasonics
,
47
(
1–4
), pp.
111
122
.
41.
Gandhi
,
N.
,
Michaels
,
J. E.
, and
Lee
,
S. J.
,
2012
, “
Acoustoelastic Lamb Wave Propagation in Biaxially Stressed Plates
,”
J. Acoust. Soc. Am.
,
132
(
3
), pp.
1284
1293
.
42.
Nayfeh
,
A. H.
,
1995
,
Wave Propagation in Layered Anisotropic Media: With Application to Composites
,
Elsevier
,
Amsterdam
.
43.
Lagasse
,
P.
,
1973
, “
Higher-Order Finite-Element Analysis of Topographic Guides Supporting Elastic Surface Waves
,”
J. Acoust. Soc. Am.
,
53
(
4
), pp.
1116
1122
.
44.
Aalami
,
B.
,
1973
, “
Waves in Prismatic Guides of Arbitrary Cross Section
,”
J. Appl. Mech.
,
40
(
4
), p.
1067
.
45.
Loveday
,
P. W.
,
2009
, “
Semi-analytical Finite Element Analysis of Elastic Waveguides Subjected to Axial Loads
,”
Ultrasonics
,
49
(
3
), pp.
298
300
.
46.
Zuo
,
P.
,
Yu
,
X.
, and
Fan
,
Z.
,
2020
, “
Acoustoelastic Guided Waves in Waveguides With Arbitrary Prestress
,”
J. Sound Vib.
,
469
, p.
115113
.
47.
Patra
,
A. K.
,
Sharma
,
A. K.
,
Joglekar
,
D.
, and
Joglekar
,
M.
,
2023
, “
A Semi-analytical Finite Element Framework for Lamb Waves in Soft Compressible Plates Considering Strain Stiffening Effect
,”
Int. J. Appl. Mech.
,
15
(
01
), p.
2250102
.
48.
Li
,
B.
,
Yan
,
W.
, and
Gao
,
Y.
,
2022
, “
Tunability of Band Gaps of Programmable Hard-Magnetic Soft Material Phononic Crystals
,”
Acta Mech. Sol. Sin.
,
35
(
5
), pp.
719
732
.
49.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2014
,
Nonlinear Theory of Electroelastic and Magnetoelastic Interactions
, Vol. 1,
Springer
,
New York
.
50.
Patra
,
A. K.
,
Khurana
,
A.
, and
Kumar
,
D.
,
2024
, “
Modeling and Analysis of a Thermo-electro-magneto-viscoelastic Actuator
,”
Int. J. Appl. Mech.
, p.
2450015
.
51.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
52.
Jemioło
,
S.
,
Franus
,
A.
, and
Domański
,
W.
,
2019
, “
Scope of Application of the Murnaghan Hyperelastic Model for Elastomers
,”
Theor. Found. Civil Eng.
, pp.
145
159
.
53.
Hayashi
,
T.
,
Song
,
W.-J.
, and
Rose
,
J. L.
,
2003
, “
Guided Wave Dispersion Curves for a Bar With an Arbitrary Cross-section, a Rod and Rail Example
,”
Ultrasonics
,
41
(
3
), pp.
175
183
.
54.
Peddeti
,
K.
, and
Santhanam
,
S.
,
2018
, “
Dispersion Curves for Lamb Wave Propagation in Prestressed Plates Using a Semi-analytical Finite Element Analysis
,”
J. Acoust. Soc. Am.
,
143
(
2
), pp.
829
840
.
55.
Patra
,
A. K.
,
Sharma
,
A. K.
,
Joglekar
,
D.
, and
Joglekar
,
M.
,
2023
, “
Propagation of Fundamental Lamb Modes Along the Non-principal Axes of Strain-Stiffened Soft Compressible Plates: A Numerical Investigation
,”
J. Acoust. Soc. Am.
,
153
(
2
), pp.
1331
1346
.
56.
Willson
,
A.
,
1977
, “
Plate Waves in Hadamard Materials
,”
J. Elasticity
,
7
(
1
), pp.
103
111
.
57.
Mohabuth
,
M.
,
Kotousov
,
A.
, and
Ng
,
C.-T.
,
2019
, “
Large Acoustoelastic Effect for Lamb Waves Propagating in an Incompressible Elastic Plate
,”
J. Acoust. Soc. Am.
,
145
(
3
), pp.
1221
1229
.
58.
Shmuel
,
G.
,
Gei
,
M.
, and
Debotton
,
G.
,
2012
, “
The Rayleigh–Lamb Wave Propagation in Dielectric Elastomer Layers Subjected to Large Deformations
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
307
316
.
59.
Broderick
,
H. C.
,
Dorfmann
,
L.
, and
Destrade
,
M.
,
2020
, “
Electro-Elastic Lamb Waves in Dielectric Plates
,”
Extreme Mech. Lett.
,
39
, p.
100782
.
60.
Kim
,
B.
,
Lee
,
S. B.
,
Lee
,
J.
,
Cho
,
S.
,
Park
,
H.
,
Yeom
,
S.
, and
Park
,
S. H.
,
2012
, “
A Comparison Among Neo-Hookean Model, Mooney–Rivlin Model, and Ogden Model for Chloroprene Rubber
,”
Int. J. Precis. Eng. Manuf.
,
13
, pp.
759
764
.
61.
Meunier
,
L.
,
Chagnon
,
G.
,
Favier
,
D.
,
Orgéas
,
L.
, and
Vacher
,
P.
,
2008
, “
Mechanical Experimental Characterisation and Numerical Modelling of an Unfilled Silicone Rubber
,”
Polym. Test.
,
27
(
6
), pp.
765
777
.
62.
Horgan
,
C. O.
, and
Saccomandi
,
G.
,
2002
, “
A Molecular-Statistical Basis for the Gent Constitutive Model of Rubber Elasticity
,”
J. Elasticity
,
68
, pp.
167
176
.
63.
Chen
,
Y.
,
Wu
,
B.
,
Su
,
Y.
, and
Chen
,
W.
,
2020
, “
Effects of Strain Stiffening and Electrostriction on Tunable Elastic Waves in Compressible Dielectric Elastomer Laminates
,”
Int. J. Mech. Sci.
,
176
, p.
105572
.
You do not currently have access to this content.