Abstract

This study employs the Lur'e operator method to derive generalized solutions for orthorhombic quasicrystals, incorporating anisotropy factors as constraints. The solutions derived contain the Lekhnitskii–Hu–Nowacki and Elliott–Lodge solutions as special cases. The corresponding fundamental solutions or Green's functions within the infinite space are also derived, offering a comprehensive characterization of quasicrystal anisotropy. It is noteworthy that Green's functions in orthorhombic quasicrystals can be simplified to those in hexagonal quasicrystals or conventional orthorhombic crystals, with possible broad engineering applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Shechtman
,
D. A.
,
Blech
,
I. A.
,
Gratias
,
D.
, and
Cahn
,
J. W.
,
1984
, “
Metallic Phase With Long-Range Orientational Order and No Translational Symmetry
,”
Phys. Rev. Lett.
,
53
(
20
), pp.
1951
1953
.
2.
Amann
,
A.
,
Cederbaum
,
L. S.
, and
Gans
,
W.
,
2012
,
Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics
,
Springer Science & Business Media
,
Dordrecht
.
3.
Dvorak
,
V.
,
1988
, “
Quasicrystals: Physical Properties
,”
Ceskoslovensky Casopis pro Fyziku, Sekce A
,
38
(
2
), pp.
105
130
.
4.
Yamamoto
,
A.
, and
Ishihara
,
K.
,
1988
, “
Penrose Patterns and Related Structures. II. Decagonal Quasicrystals
,”
Acta Crystallogr. Sect. A: Found. Crystallogr.
,
44
(
5
), pp.
707
714
.
5.
Socolar
,
J. E. S.
,
Lubensky
,
T. C.
, and
Steinhardt
,
P. J.
,
1986
, “
Phonons, Phasons, and Dislocations in Quasicrystals
,”
Phys. Rev. B
,
34
(
5
), pp.
3345
3360
.
6.
Bak
,
P.
,
1985
, “
Symmetry, Stability, and Elastic Properties of Icosahedral Incommensurate Crystals
,”
Phys. Rev. B
,
32
(
9
), pp.
5764
5772
.
7.
Ding
,
D.
,
Yang
,
W.
,
Hu
,
C.
, and
Wang
,
R.
,
1993
, “
Generalized Elasticity Theory of Quasicrystals
,”
Phys. Rev. B
,
48
(
10
), pp.
7003
7010
.
8.
Fan
,
T. Y.
,
2016
,
Mathematical Theory of Elasticity of Quasicrystals and Its Applications
,
Springer Singapore
,
Singapore
, p.
246
.
9.
Gao
,
Y.
, and
Zhao
,
B. S.
,
2006
, “
A General Treatment of Three-Dimensional Elasticity of Quasicrystals by an Operator Method
,”
Phys. Status Solidi B
,
243
(
15
), pp.
4007
4019
.
10.
Gao
,
Y.
, and
Ricoeur
,
A.
,
2011
, “
Three-Dimensional Green’s Functions for Two-Dimensional Quasi-Crystal Bimaterials
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
467
(
2133
), pp.
2622
2642
.
11.
Chen
,
W. Q.
,
Ma
,
Y. L.
, and
Ding
,
H. J.
,
2004
, “
On Three-Dimensional Elastic Problems of One-Dimensional Hexagonal Quasicrystal Bodies
,”
Mech. Res. Commun.
,
31
(
6
), pp.
633
641
.
12.
Gao
,
Y.
,
Xu
,
S. P.
, and
Zhao
,
B. S.
,
2008
, “
A Theory of General Solutions of 3D Problems in 1D Hexagonal Quasicrystals
,”
Phys. Scr.
,
77
(
1
), p.
015601
.
13.
Gao
,
Y.
,
Xu
,
S. P.
, and
Zhao
,
B. S.
,
2009
, “
General Solutions of Equilibrium Equations for 1D Hexagonal Quasicrystals
,”
Mech. Res. Commun.
,
36
(
3
), pp.
302
308
.
14.
Gao
,
Y.
, and
Zhao
,
B. S.
,
2009
, “
General Solutions of Three-Dimensional Problems for Two-Dimensional Quasicrystals
,”
Appl. Math. Model.
,
33
(
8
), pp.
3382
3391
.
15.
Wang
,
X.
,
2006
, “
The General Solution of One-Dimensional Hexagonal Quasicrystal
,”
Mech. Res. Commun.
,
33
(
4
), pp.
576
580
.
16.
Gao
,
Y.
, and
Ricoeur
,
A.
,
2012
, “
Three-Dimensional Analysis of a Spheroidal Inclusion in a Two-Dimensional Quasicrystal Body
,”
Philos. Mag.
,
92
(
34
), pp.
4334
4353
.
17.
Li
,
X. Y.
, and
Li
,
P. D.
,
2012
, “
Three-Dimensional Thermo-Elastic General Solutions of One-Dimensional Hexagonal Quasi-Crystal and Fundamental Solutions
,”
Phys. Lett. A
,
376
(
26
), pp.
2004
2009
.
18.
Yang
,
L. Z.
,
Zhang
,
L. L.
,
Song
,
F.
, and
Gao
,
Y.
,
2014
, “
General Solutions for Three-Dimensional Thermoelasticity of Two-Dimensional Hexagonal Quasicrystals and an Application
,”
J. Therm. Stresses
,
37
(
3
), pp.
363
379
.
19.
Fan
,
C. Y.
,
Li
,
Y.
,
Xu
,
G. T.
, and
Zhao
,
M. H.
,
2016
, “
Fundamental Solutions and Analysis of Three-Dimensional Cracks in One-Dimensional Hexagonal Piezoelectric Quasicrystals
,”
Mech. Res. Commun.
,
74
, pp.
39
44
.
20.
Lekhnitskii
,
S. G.
,
Fern
,
P.
,
Brandstatter
,
J. J.
, and
Dill
,
E. H.
,
1964
, “
Theory of Elasticity of an Anisotropic Elastic Body
,”
Phys. Today
,
17
(
1
), pp.
84
84
.
21.
Hu
,
C. Z.
,
Wang
,
R. H.
, and
Ding
,
D. H.
,
2000
, “
Symmetry Groups, Physical Property Tensors, Elasticity and Dislocations in Quasicrystals
,”
Rep. Prog. Phys.
,
63
(
1
), pp.
1
39
.
22.
Lau
,
K.
, and
McCurdy
,
A. K.
,
1998
, “
Elastic Anisotropy Factors for Orthorhombic, Tetragonal, and Hexagonal Crystals
,”
Phys. Rev. B
,
58
(
14
), pp.
8980
8984
.
23.
Lur’e
,
A. I.
,
1937
, “
On the Theory of the System of Linear Differential Equations With the Constant Coefficients
,”
Trudy Leningrad, Industrial
,
6
(
1
), pp.
31
36
.
24.
Ding
,
H. J.
,
Guo
,
F. L.
, and
Hou
,
P. F.
,
2000
, “
A General Solution for Piezothermoelasticity of Transversely Isotropic Piezoelectric Materials and Its Applications
,”
Int. J. Eng. Sci.
,
38
(
13
), pp.
1415
1440
.
25.
De Jong
,
M.
,
Chen
,
W.
,
Angsten
,
T.
,
Jain
,
A.
,
Notestine
,
R.
,
Gamst
,
A.
,
Sluiter
,
M.
, et al
,
2015
, “
Charting the Complete Elastic Properties of Inorganic Crystalline Compounds
,”
Sci. Data
,
2
(
1
), p.
150009
.
26.
Ong
,
S. P.
,
Cholia
,
S.
,
Jain
,
A.
,
Brafman
,
M.
,
Gunter
,
D.
,
Ceder
,
G.
, and
Persson
,
K. A.
,
2015
, “
The Materials Application Programming Interface (API): A Simple, Flexible and Efficient API for Materials Data Based on REpresentational State Transfer (REST) Principles
,”
Comput. Mater. Sci.
,
97
, pp.
209
215
.
27.
Ranganathan
,
S. I.
, and
Ostoja-Starzewski
,
M.
,
2008
, “
Universal Elastic Anisotropy Index
,”
Phys. Rev. Lett.
,
101
(
5
), p.
055504
.
28.
Zhang
,
J.
,
Zhang
,
L.
,
Pan
,
E.
, and
Gao
,
Y.
,
2022
, “
Certain Problems in Constrained Cubic Quasicrystals: General Solutions and Infinite-Space Green's Functions
,”
Int. J. Solids Struct.
,
254-255
, p.
111830
.
29.
Zhang
,
J.
,
Zhang
,
L.
,
Pan
,
E.
, and
Gao
,
Y.
,
2023
, “
Certain Problems in Constrained Cubic Quasicrystals: Half-Space Green's Functions
,”
Int. J. Solids Struct.
,
271–272
, p.
112234
.
30.
Fujiwara
,
T.
, and
Ishii
,
Y.
,
2008
,
Quasicrystals
,
Amsterdam; Boston, MA
.
You do not currently have access to this content.