Abstract

Understanding fluid movement in multi-pored materials is vital for energy security and physiology. For instance, shale (a geological material) and bone (a biological material) exhibit multiple pore networks. Double porosity/permeability models provide a mechanics-based approach to describe hydrodynamics in aforesaid porous materials. However, current theoretical results primarily address steady-state response, and their counterparts in the transient regime are still wanting. The chief aim of this paper is to fill this knowledge gap. We present three principal properties—with rigorous mathematical arguments—that the solutions under the double porosity/permeability model satisfy in the transient regime: backward-in-time uniqueness, reciprocity, and a variational principle. We employ the “energy method”—exploiting the physical total kinetic energy of the flowing fluid—to establish the first property and Cauchy–Riemann convolutions to prove the next two. The results reported in this paper—qualitatively describe the dynamics of fluid flow in double-pored media—have (a) theoretical significance, (b) practical applications, and (c) considerable pedagogical value. In particular, these results will benefit practitioners and computational scientists in checking the accuracy of numerical simulators. The backward-in-time uniqueness lays a firm theoretical foundation for pursuing inverse problems in which one predicts the prescribed initial conditions based on data available about the solution at a later instance.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Barenblatt
,
G. I.
,
Zheltov
,
I. P.
, and
Kochina
,
I. N.
,
1960
, “
Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [strata]
,”
J. Appl. Math. Mech.
,
24
(
5
), pp.
1286
1303
.
2.
Chen
,
Z. X.
,
1989
, “
Transient Flow of Slightly Compressible Fluids Through Double-Porosity, Double-permeability Systems—A State-of-the-Art Review
,”
Transp. Porous Media
,
4
, pp.
147
184
.
3.
Arbogast
,
T.
,
Douglas, Jr.
,
J.
, and
Hornung
,
U.
,
1990
, “
Derivation of the Double Porosity Model of Single Phase Flow Via Homogenization Theory
,”
SIAM J. Math. Anal.
,
21
(
4
), pp.
823
836
.
4.
Dykhuizen
,
R. C.
,
1990
, “
A New Coupling Term for Dual-Porosity Models
,”
Water Resour. Res.
,
26
(
2
), pp.
351
356
.
5.
Boutin
,
C.
, and
Royer
,
P.
,
2015
, “
On Models of Double Porosity Poroelastic Media
,”
Geophys. J. Int.
,
203
(
3
), pp.
1694
1725
.
6.
Borja
,
R. I.
, and
Koliji
,
A.
,
2009
, “
On the Effective Stress in Unsaturated Porous Continua With Double Porosity
,”
J. Mech. Phys. Solids
,
57
(
1
), pp.
1182
1193
.
7.
Choo
,
J.
,
White
,
J.
, and
Borja
,
R. I.
,
2016
, “
Hydromechanical Modeling of Unsaturated Flow in Double Porosity Media
,”
Int. J. Geomech.
,
16
(
6
), pp.
1
18
, D4016002.
8.
Nakshatrala
,
K. B.
,
Joodat
,
S. H. S.
, and
Ballarini
,
R.
,
2018
, “
Modeling Flow in Porous Media With Double Porosity/permeability: Mathematical Model, Properties, and Analytical Solutions
,”
J. Appl. Mech.
,
85
(
8
), p.
081009
.
9.
Nakshatrala
,
K. B.
,
2021
, “
On Boundedness and Growth of Unsteady Solutions Under the Double Porosity/Permeability Model
,”
Transp. Porous Media
,
136
, pp.
457
470
.
10.
Evans
,
L. C.
,
2002
,
Partial Differential Equations
, 1st ed.,
19
,
American Mathematical Society
,
Providence, RI
.
11.
Pao
,
C. V.
,
1992
,
Nonlinear Parabolic and Elliptic Equations
,
Plenum Press
,
New York
.
12.
Maxwell
,
J. C.
,
1864
, “
L. On the Calculation of the Equilibrium and Stiffness of Frames
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
27
(
182
), pp.
294
299
.
13.
Betti
,
E.
,
1872
, “
Teoria Della Elasticita’
,”
Il Nuovo Cimento
,
7
(
1
), pp.
69
97
.
14.
Truesdell
,
C.
,
1963
, “
The Meaning of Betti’s Reciprocal Theorem
,”
J. Res. Nat. Bureau Stand.–B. Math. Math. Phys.
,
67B
, pp.
85
86
.
15.
Strutt
,
J. W.
,
1873
, “
(Lord Rayleigh) Some General Theorems Relating to Vibrations
,”
Proc. Lond. Math Soc.
,
4
(
1
), pp.
357
368
.
16.
Graffi
,
D.
,
1946
, “
Sul Teorema Di Reciprocita Nella Dinamica Dei Corpi Elastici
,”
Memorie della Accademia delle Scienze dell’Istituto di Bologna
,
4
(
1
), pp.
103
109
.
17.
de Hoop
,
A. T.
,
1966
, “
An Elastodynamic Reciprocity Theorem for Linear, Viscoelastic Media
,”
Appl. Sci. Res.
,
16
, pp.
39
45
.
18.
de Hoop
,
A. T.
,
1995
,
Handbook of Radiation and Scattering of Waves: Acoustic Waves in Fluids
,
Academic Press
,
San Diego, CA
.
19.
Gurtin
,
M. E.
,
1973
, “The Linear Theory of Elasticity,”
Linear Theories of Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells
,
C. A.
Truesdel
l, ed.,
Springer
,
Berlin
, pp.
1
295
.
20.
Achenbach
,
J. D.
,
2003
,
Reciprocity in Elastodynamics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Achenbach
,
J. D.
,
2006
, “
Reciprocity and Related Topics in Elastodynamics
,”
ASME Appl. Mech. Rev.
,
59
(
1
), pp.
13
32
.
22.
Blanchard
,
A.
,
Sapsis
,
T. P.
, and
Vakakis
,
A. F.
,
2018
, “
Non-Reciprocity in Nonlinear Elastodynamics
,”
J. Sound Vib.
,
412
, pp.
326
335
.
23.
Mossakovskii
,
V. I.
,
1953
, “
Application of the Reciprocity Theorem to the Determination of the Resultant Forces and Moments in Three-Dimensional Contact Problems
,”
PMM
,
17
, pp.
477
482
.
24.
Moore
,
M. R.
, and
Hills
,
D. A.
,
2020
, “
Extending the Mossakovskii Method to Contacts Supporting a Moment
,”
J. Mech. Phys. Solids
,
141
, p.
103989
.
25.
Aliabadi
,
F. M. H.
,
2020
, “Boundary Element Methods,”
Encyclopedia of Continuum Mechanics
,
H.
Altenbach
and,
A.
Öchsner
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
182
193
.
26.
Beskos
,
D. E.
,
1987
, “
Boundary Element Methods in Dynamic Analysis
,”
ASME Appl. Mech. Rev.
,
40
(
1
), pp.
1
23
.
27.
Panagiotopoulos
,
C. G.
, and
Manolis
,
G. D.
,
2011
, “
Three-Dimensional BEM for Transient Elastodynamics Based on the Velocity Reciprocal Theorem
,”
Eng. Anal. Bound. Elem.
,
35
(
3
), pp.
507
516
.
28.
Shabouei
,
M.
, and
Nakshatrala
,
K. B.
,
2016
, “
Mechanics-Based Solution Verification for Porous Media Models
,”
Commun. Comput. Phys.
,
20
(
5
), pp.
1127
1162
.
29.
Lanczos
,
C.
,
1986
,
The Variational Principles of Mechanics
, 4th ed.,
Dover Publications, Inc.
,
New York
.
30.
Washizu
,
K.
,
1968
,
Variational Methods in Elasticity and Plasticity
,
Pergamon Press
,
Oxford, UK
.
31.
Shames
,
I. H.
, and
Dym
,
C. L.
,
1985
,
Energy and Finite Element Methods in Structural Mechanics
,
Hemisphere Publishing Corporation
,
New York
.
32.
Huet
,
C.
,
1990
, “
Application of Variational Concepts to Size Effects in Elastic Heterogeneous Bodies
,”
J. Mech. Phys. Solids
,
38
(
6
), pp.
813
841
.
33.
Koiter
,
W. T.
,
1967
,
On the Stability of Elastic Equilibrium
,
National Aeronautics and Space Administration
,
Washington, DC
.
34.
Deriglazov
,
A.
,
2016
,
Classical Mechanics: Hamiltonian and Lagrangian Formalism
,
Springer
,
Berlin, Germany
.
35.
Rosenberg
,
R.
,
1977
,
Analytical Dynamics
,
Plenum Press
,
New York
.
36.
Griffiths
,
D. J.
, and
Schroeter
,
D. F.
,
2018
,
Introduction to Quantum Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
37.
Gurtin
,
M. E.
,
1964
, “
Variational Principles for Linear Initial-Value Problems
,”
Q. Appl. Math.
,
22
(
3
), pp.
252
256
.
38.
Flanders
,
H.
,
1973
, “
Differentiation Under the Integral Sign
,”
Am. Math. Monthly
,
80
(
6
), pp.
615
627
.
39.
Mikusinski
,
J.
,
1983
,
Operational Calculus
, 2nd ed.,
Vol. 1
,
Pergamon Press
,
Oxford, UK
.
40.
Steele
,
J. M.
,
2004
,
The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities
,
Cambridge University Press
,
Cambridge, UK
.
41.
Hardy
,
G. H.
,
Littlewood
,
J. E.
, and
Pólya
,
G.
,
1952
,
Inequalities
,
Cambridge University Press
,
Cambridge, UK
.
42.
Bartle
,
R. G.
, and
Sherbert
,
D. R.
,
2000
,
Introduction to Real Analysis
,
Wiley New York
,
New York
.
43.
Pachpatte
,
B. G.
,
1998
,
Inequalities for Differential and Integral Equations
,
Academic Press
,
San Diego, CA
.
You do not currently have access to this content.