Abstract

Bistable shallow arches are ubiquitous in many engineering systems ranging from compliant mechanisms and biomedical stents to energy harvesters and passive fluidic controllers. In all these scenarios, the bistable states of the arch and the sudden transitions between them via snap-through instability are harnessed. However, bistable arches have been traditionally studied and characterized by triggering snap-through instability using quasi-static forces. Here, we analytically examine the effect of oscillatory loads on bistable arches and investigate the dynamic behaviors ranging from intrawell motion to periodic and chaotic interwell motion. The linear and nonlinear dynamic responses of both elastically and plastically deformed shallow arches are presented. Introducing an energy potential criterion, we classify the structure’s behavior within the parameter space. This energy-based approach allows us to explore the parameter space for high-dimensional models of the arch by varying the force amplitude and excitation frequency. Bifurcation diagrams, Lyapunov exponents, and maximum critical energy plots are presented to characterize the dynamic response of the system. Our results reveal that unstable solutions admitted through higher modes govern the critical energy required for interwell motion. This study investigates the rich nonlinear dynamic behavior of the arch element and it introduces an energy potential criterion that can scale easily to classify motion of arrays of bistable arches for future developments of multistable mechanical metamaterials.

References

1.
Kurrer
,
K.
,
2008
,
The History of the Theory of Structures: From Arch Analysis to Computational Mechanics
, 1st ed.,
Wiley
,
Berlin, Germany
.
2.
Jin
,
L.
,
Khajehtourian
,
R.
,
Mueller
,
J.
,
Rafsanjani
,
A.
,
Tournat
,
V.
,
Bertoldi
,
K.
, and
Kochmann
,
D. M.
,
2020
, “
Guided Transition Waves in Multistable Mechanical Metamaterials
,”
Proc. Natl. Acad. Sci. USA
,
117
(
5
), pp.
2319
2325
.
3.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
4.
Wu
,
L.
, and
Pasini
,
D.
,
2023
, “
In-Situ Activation of Snap-Through Instability in Multi-response Metamaterials Through Multistable Topological Transformation
,”
Adv. Mater.
,
35
(
36
), p.
2301109
.
5.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.
6.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci. USA
,
115
(
22
), pp.
5698
5702
.
7.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2021
, “
Programming Nonreciprocity and Reversibility in Multistable Mechanical Metamaterials
,”
Nat. Commun.
,
12
(
1
), p.
3454
.
8.
Mei
,
T.
,
Meng
,
Z.
,
Zhao
,
K.
, and
Chen
,
C. Q.
,
2021
, “
A Mechanical Metamaterial With Reprogrammable Logical Functions
,”
Nat. Commun.
,
12
(
1
), p.
7234
.
9.
Radisson
,
B.
, and
Kanso
,
E.
,
2023
, “
Elastic Snap-Through Instabilities Are Governed by Geometric Symmetries
,”
Phys. Rev. Lett.
,
130
(
23
), p.
236102
.
10.
Han
,
J. S.
,
Ko
,
J. S.
, and
Korvink
,
J. G.
,
2004
, “
Structural Optimization of a Large-Displacement Electromagnetic Lorentz Force Microactuator for Optical Switching Applications
,”
J. Micromech. Microeng.
,
14
(
11
), pp.
1585
1596
.
11.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
12.
Huang
,
H.-W.
, and
Yang
,
Y.-J.
,
2013
, “
A MEMS Bistable Device With Push-On–Push-Off Capability
,”
J. Microelectromech. Syst.
,
22
(
1
), pp.
7
9
.
13.
Lajnef
,
N.
,
Burgueño
,
R.
,
Borchani
,
W.
, and
Sun
,
Y.
,
2014
, “
A Concept for Energy Harvesting From Quasi-static Structural Deformations Through Axially Loaded Bilaterally Constrained Columns With Multiple Bifurcation Points
,”
Smart Mater. Struct.
,
23
(
5
), p.
055005
.
14.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
15.
Hansen
,
B. J.
,
Carron
,
C. J.
,
Jensen
,
B. D.
,
Hawkins
,
A. R.
, and
Schultz
,
S. M.
,
2007
, “
Plastic Latching Accelerometer Based on Bistable Compliant Mechanisms
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1967
1972
.
16.
Johnson
,
T.
,
Gandhi
,
F.
, and
Frecker
,
M.
,
2008
, “
Bistable Mechanisms for Morphing Rotors
,”
The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring
,
San Diego, CA
,
Mar. 9–13
, p. 692829..
17.
Pontecorvo
,
M. E.
,
Barbarino
,
S.
,
Murray
,
G. J.
, and
Gandhi
,
F. S.
,
2013
, “
Bistable Arches for Morphing Applications
,”
J. Intell. Mater. Syst. Struct.
,
24
(
3
), pp.
274
286
.
18.
Berry
,
M.
,
Kim
,
Y.
,
Limberg
,
D.
,
Hayward
,
R. C.
, and
Santangelo
,
C. D.
,
2022
, “
Mechanical Signaling Cascades
,”
Physical Review E
,
106
(
4
).
19.
Raney
,
J. R.
,
Nadkarni
,
N.
,
Daraio
,
C.
,
Kochmann
,
D. M.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2016
, “
Stable Propagation of Mechanical Signals in Soft Media Using Stored Elastic Energy
,”
Proc. Natl. Acad. Sci. USA
,
113
(
35
), pp.
9722
9727
.
20.
Pandey
,
A.
,
Moulton
,
D. E.
,
Vella
,
D.
, and
Holmes
,
D. P.
,
2014
, “
Dynamics of Snapping Beams and Jumping Poppers
,”
EPL
,
105
(
2
), p.
24001
.
21.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2017
, “
Critical Slowing Down in Purely Elastic ‘Snap-Through’ Instabilities
,”
Nat. Phys.
,
13
(
2
), pp.
142
145
.
22.
Radisson
,
B.
, and
Kanso
,
E.
,
2023
, “
Dynamic Behavior of Elastic Strips Near Shape Transitions
,”
Phys. Rev. E
,
107
(
6
), p.
065001
.
23.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2020
, “
Snapping of Hinged Arches Under Displacement Control: Strength Loss and Nonreciprocity
,”
Phys. Rev. E
,
101
(
5
), p.
053004
.
24.
Zhu
,
Y.
, and
Zu
,
J. W.
,
2013
, “
Enhanced Buckled-Beam Piezoelectric Energy Harvesting Using Midpoint Magnetic Force
,”
Appl. Phys. Lett.
,
103
(
4
), p.
041905
.
25.
Pal
,
A.
, and
Sitti
,
M.
,
2023
, “
Programmable Mechanical Devices Through Magnetically Tunable Bistable Elements
,”
Proc. Natl. Acad. Sci. USA
,
120
(
15
), p.
e2212489120
.
26.
Abbasi
,
A.
,
Sano
,
T. G.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2023
, “
Snap Buckling of Bistable Beams Under Combined Mechanical and Magnetic Loading
,”
Philos. Trans. R. Soc. A
,
381
(
2244
), p.
20220029
.
27.
Smith
,
M. L.
,
Gao
,
J.
,
Skandani
,
A. A.
,
Deering
,
N.
,
Wang
,
D. H.
,
Sicard
,
A. A.
,
Plaver
,
M.
,
Tan
,
L.-S.
,
White
,
T. J.
, and
Shankar
,
M. R.
,
2019
, “
Tuned Photomechanical Switching of Laterally Constrained Arches
,”
Smart Mater. Struct.
,
28
(
7
), p.
075009
.
28.
Shankar
,
M. R.
,
Smith
,
M. L.
,
Tondiglia
,
V. P.
,
Lee
,
K. M.
,
McConney
,
M. E.
,
Wang
,
D. H.
,
Tan
,
L.-S.
, and
White
,
T. J.
,
2013
, “
Contactless, Photoinitiated Snap-Through in Azobenzene-Functionalized Polymers
,”
Proc. Natl. Acad. Sci. USA
,
110
(
47
), pp.
18792
18797
.
29.
Hsu
,
C.
, and
Hsu
,
W.
,
2003
, “
Instability in Micromachined Curved Thermal Bimorph Structures
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
955
962
.
30.
Jakomin
,
M.
,
Kosel
,
F.
, and
Kosel
,
T.
,
2010
, “
Thin Double Curved Shallow Bimetallic Shell of Translation in a Homogenous Temperature Field by Non-linear Theory
,”
Thin-Walled Struct.
,
48
(
3
), pp.
243
259
.
31.
Das
,
K.
, and
Batra
,
R. C.
,
2009
, “
Symmetry Breaking, Snap-Through and Pull-In Instabilities Under Dynamic Loading of Microelectromechanical Shallow Arches
,”
Smart Mater. Struct.
,
18
(
11
), p.
115008
.
32.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2017
, “
Passive Control of Viscous Flow Via Elastic Snap-Through
,”
Phys. Rev. Lett.
,
119
(
14
), p.
144502
.
33.
Goncharuk
,
K.
,
Feldman
,
Y.
, and
Oshri
,
O.
,
2023
, “
Fluttering-Induced Flow in a Closed Chamber
,”
J. Fluid Mech.
,
976
(
A15
).
34.
Peretz
,
O.
,
Mishra
,
A. K.
,
Shepherd
,
R. F.
, and
Gat
,
A. D.
,
2020
, “
Underactuated Fluidic Control of a Continuous Multistable Membrane
,”
Proc. Natl. Acad. Sci. USA
,
117
(
10
), pp.
5217
5221
.
35.
Virgin
,
L.
,
1988
, “
On the Harmonic Response of an Oscillator With Unsymmetric Restoring Force
,”
J. Sound Vib.
,
126
(
1
), pp.
157
165
.
36.
Holmes
,
P.
,
1979
, “
A Nonlinear Oscillator With a Strange Attractor
,”
Philos. Trans. R. Soc. Lond. A
,
292
(
1394
), pp.
419
448
.
37.
Mahaffey
,
R. A.
,
1976
, “
Anharmonic Oscillator Description of Plasma Oscillations
,”
Phys. Fluids
,
19
(
9
), pp.
1387
1391
.
38.
Virgin
,
L. N.
, and
Cartee
,
L. A.
,
1991
, “
A Note on the Escape From a Potential Well
,”
Int. J. Non-Linear Mech.
,
26
(
3–4
), pp.
449
452
.
39.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1989
, “
Modal Interactions in Dynamical and Structural Systems
,”
Appl. Mech. Rev.
,
42
(
11S
), pp.
S175
S201
.
40.
Mann
,
B.
, and
Khasawneh
,
F.
,
2009
, “
An Energy-Balance Approach for Oscillator Parameter Identification
,”
J. Sound Vib.
,
321
(
1–2
), pp.
65
78
.
41.
Timošenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
, 2nd ed. (
Engineering Societies Monographs
),
McGraw-Hill
,
Auckland
.
42.
Blevins
,
R. D.
,
2016
,
Formulas for Dynamics, Acoustics and Vibration
,
Wiley
,
Chichester, West Sussex
.
43.
Nayfeh
,
A. H.
,
Kreider
,
W.
, and
Anderson
,
T. J.
,
1995
, “
Investigation of Natural Frequencies and Mode Shapes of Buckled Beams
,”
AIAA J.
,
33
(
6
), pp.
1121
1126
.
44.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
,
1997
, “
AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations, user’s Manual
,” Center for Research on Parallel Computing, California Institute of Technology, Pasadena, CA.
45.
Parker
,
T. S.
, and
Chua
,
L. O.
,
2017
,
Practical Numerical Algorithms for Chaotic Systems
,
Springer-Verlag
,
New York
(Softcover Reprint of the Hardcover 1st edition 1989 ed.).
46.
Hasan
,
M. N.
,
Greenwood
,
T. E.
,
Parker
,
R. G.
,
Kong
,
Y. L.
, and
Wang
,
P.
,
2023
, “
Fractal Patterns in the Parameter Space of a Bistable Duffing Oscillator
,”
Phys. Rev. E
,
108
(
2
), p.
L022201
.
47.
Sandri
,
M.
,
1996
, “
Numerical Calculation of Lyapunov Exponents
,”
The Math. J.
,
6
(
3
), pp.
78
84
.
48.
Virgin
,
L. N.
,
Plaut
,
R. H.
, and
Cheng
,
C.-C.
,
1992
, “
Prediction of Escape From a Potential Well Under Harmonic Excitation
,”
Int. J. Non-Linear Mech.
,
27
(
3
), pp.
357
365
.
49.
Moon
,
F. C.
,
2010
,
Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers
,
Wiley
,
New York
, OCLC:1039156718.
50.
Rocha
,
R. T.
,
Balthazar
,
J. M.
,
Tusset
,
A. M.
,
De Souza
,
S. L. T.
,
Janzen
,
F. C.
, and
Arbex
,
H. C.
,
2019
, “
On a Non-ideal Magnetic Levitation System: Nonlinear Dynamical Behavior and Energy Harvesting Analyses
,”
Nonlinear Dyn.
,
95
(
4
), pp.
3423
3438
.
51.
Jalilvand
,
A.
, and
Fotoohabadi
,
H.
,
2009
, “
The Application of Duffing Oscillator in Weak Signal Detection
,”
ECTI Trans. Electr. Eng., Electron. Commun.
,
9
(
1
), pp.
1
6
.
52.
Szemplińska-Stupnicka
,
W.
,
1988
, “
The Refined Approximate Criterion for Chaos in a Two-State Mechanical Oscillator
,”
Ing. Arch.
,
58
(
5
), pp.
354
366
.
53.
Moon
,
F. C.
, and
Li
,
G. X.
,
1985
, “
Fractal Basin Boundaries and Homoclinic Orbits for Periodic Motion in a Two-Well Potential
,”
Phys. Rev. Lett.
,
55
(
14
), pp.
1439
1442
.
You do not currently have access to this content.