Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The singular level of a v-notched isotropic domain is crucial as it relates to the domain’s stress intensity factor (SIF), which is essential for failure prediction. Typically, the singular level is calculated using deterministic material properties (like mean values), but this can misrepresent the severity of the singularity. The singular level’s accuracy is influenced by the stochastic nature of material properties, particularly Poisson’s ratio. This paper presents a stochastic approximation of eigenvalues for an isotropic v-notched domain with stochastic material properties. While both Young’s modulus and Poisson’s ratio are independent stochastic variables, only the stochasticity of Poisson’s ratio affects the eigenvalues. The generalized polynomial chaos method is applied to these stochastic eigenvalues, resulting in a polynomial approximation based on the domain’s stochastic Poisson ratio. The polynomial’s deterministic constants are derived from eigenvalues computed using chosen deterministic material properties according to the stochastic properties of Young’s modulus and Poisson’s ratio. A numerical example illustrates the stochastic approximation of the first two eigenvalues, showing fast convergence as the number of polynomials increases. Results are validated against the Monte Carlo method, highlighting the importance of stochastic approximation in accurately predicting the singular level, which may be more severe than expected when using deterministic approximations. These findings have significant practical implications, as they underscore the need to consider stochastic material properties in structural design and failure prediction.

References

1.
Williams
,
M. L.
,
1952
, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
,
19
(
4
), pp.
526
528
.
2.
Karal Jr
,
F. C.
, and
Karp
,
S. N.
,
1962
, “
The Elastic-Field Behavior in the Neighborhood of a Crack of Arbitrary Angle
,”
Commun. Pure Appl. Math.
,
15
(
4
), pp.
413
421
.
3.
Grisvard
,
P.
,
2011
,
Elliptic Problems in Nonsmooth Domains
,
SIAM
,
Marshfield, MA
.
4.
Beagles
,
A. E.
, and
Sändig
,
A. M.
,
1991
, “
Singularities of Rotationally Symmetric Solutions of Boundary Value Problems for the Lamé Equations
,”
ZAMM-J. Appl. Math. Mech.
,
71
(
11
), pp.
423
431
.
5.
Costabel
,
M.
,
Dauge
,
M.
, and
Lafranche
,
Y.
,
2001
, “
Fast Semi-Analytic Computation of Elastic Edge Singularities
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
15–17
), pp.
2111
2134
.
6.
Leguillon
,
D.
, and
Sanchez-Palencia
,
E.
,
1987
,
Computation of Singular Solutions in Elliptic Problems and Elasticity
,
John Wiley & Sons, Inc
,
New York
.
7.
Yosibash
,
Z.
, and
Szabó
,
B.
,
1995
, “
Numerical Analysis of Singularities in Two-Dimensions Part 1: Computation of Eigenpairs
,”
Int. J. Numer. Methods Eng.
,
38
(
12
), pp.
2055
2082
.
8.
Szabó
,
B. A.
, and
Yosibash
,
Z.
,
1996
, “
Numerical Analysis of Singularities in Two Dimensions. Part 2: Computation of Generalized Flux/Stress Intensity Factors
,”
Int. J. Numer. Methods Eng.
,
39
(
3
), pp.
409
434
.
9.
Yosibash
,
Z.
,
2012
,
Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection With Failure Initiation
,
Springer
,
New York
.
10.
Omer
,
N.
, and
Yosibash
,
Z.
,
2017
, “
Singular Asymptotic Expansion of the Elastic Solution Along an Edge Around Which Material Properties Depend on the Angular Coordinate
,”
Math. Mech. Solids
,
22
(
12
), pp.
2288
2308
.
11.
Zohdi
,
T. I.
, and
Wriggers
,
P.
,
2004
,
An Introduction to Computational Micromechanics
, Vol.
20
,
Springer Science & Business Media
.
12.
Lord
,
J. D.
, and
Morrell
,
R. M.
,
2006
, Elastic Modulus Measurement. Measurement Good Practices Guide, 98.
13.
Desceliers
,
C.
,
Soize
,
C.
, and
Ghanem
,
R.
,
2007
, “
Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests
,”
Comput. Mech.
,
39
(
6
), pp.
831
838
.
14.
Lord
,
J. D.
, and
Morrell
,
R. M.
,
2010
, “
Elastic Modulus Measurement - Obtaining Reliable Data From the Tensile Test
,”
Metrologia
,
47
(
2
), pp.
S41
S49
.
15.
Kostic
,
S.
,
Miljojkovic
,
J.
,
Simunovic
,
G.
,
Vukelic
,
D.
, and
Tadic
,
B.
,
2022
, “
Uncertainty in the Determination of Elastic Modulus by Tensile Testing
,”
Eng. Sci. Technol. Int. J.
,
25
, p.
100998
.
16.
Luan
,
S.
,
Kraynik
,
A. M.
, and
Gaitanaros
,
S.
,
2022
, “
Microscopic and Macroscopic Instabilities in Elastomeric Foams
,”
Mech. Mater.
,
164
, pp.
104
124
.
17.
Rahman
,
S.
,
2001
, “
Probabilistic Fracture Mechanics: J-Estimation and Finite Element Methods
,”
Eng. Fract. Mech.
,
68
(
1
), pp.
107
125
.
18.
Reddy
,
R. M.
, and
Rao
,
B. N.
,
2008
, “
Stochastic Fracture Mechanics by Fractal Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
3–4
), pp.
459
474
.
19.
Chowdhury
,
M. S.
,
Song
,
C.
, and
Gao
,
W.
,
2011
, “
Probabilistic Fracture Mechanics by Using Monte Carlo Simulation and the Scaled Boundary Finite Element Method
,”
Eng. Fract. Mech.
,
78
(
12
), pp.
2369
2389
.
20.
Su
,
C.
, and
Zheng
,
C.
,
2012
, “
Probabilistic Fracture Mechanics Analysis of Linear-Elastic Cracked Structures by Spline Fictitious Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
36
(
12
), pp.
1828
1837
.
21.
Beck
,
A. T.
, and
De Santana Gomes
,
W. J.
,
2013
, “
Stochastic Fracture Mechanics Using Polynomial Chaos
,”
Probab. Eng. Mech.
,
34
, pp.
26
39
.
22.
Silberschmidt
,
V. V.
,
2006
, “
Effect of Material’s Randomness on Scaling of Crack Propagation in Ceramics
,”
Int. J. Fract.
,
140
(
1
), pp.
73
85
.
23.
Keleş
,
Ö.
,
García
,
R. E.
, and
Bowman
,
K. J.
,
2013
, “
Stochastic Failure of Isotropic, Brittle Materials With Uniform Porosity
,”
Acta Mater.
,
61
(
8
), pp.
2853
2862
.
24.
Omer
,
N.
,
2019
, “
Direct Extraction of Stochastic Stress Intensity Factors Using Generalized Polynomial Chaos
,”
Int. J. Fract.
,
219
(
1
), pp.
123
134
.
25.
Omer
,
N.
,
2021
, “
Extracting Stress Intensity Factors for Isotropic Cracked Domains Having Stochastic Material Properties
,”
Acta Mech.
,
232
(
6
), pp.
2165
2182
.
26.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
27.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations
,
Princeton University Press
,
Princeton, NJ
.
28.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
29.
Xiu
,
D.
,
2009
, “
Fast Numerical Methods for Stochastic Computations: A Review
,”
Commun. Comput. Phys.
,
5
(
2–4
), pp.
242
272
.
30.
Gautschi
,
W.
,
2004
,
Orthogonal Polynomials: Computation and Approximation
,
OUP
,
Oxford, UK
.
31.
Milovanović
,
G. V.
,
2011
, “
Numerical Quadratures and Orthogonal Polynomials
,”
Studia Univer. Babes-Bolyai, Math.
,
56
(
2
), pp.
449
464
.
You do not currently have access to this content.