Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Materials and structures with tunable mechanical properties are essential for numerous applications. However, constructing such structures poses a great challenge since it is normally very complicated to change the properties of a material after its fabrication, particularly in pure force fields. Herein, we propose a multistep and elastically stable 3D mechanical metamaterial having simultaneously tunable effective Young's modulus and auxeticity controlled by the applied compressive strain. Metamaterial samples are fabricated by 3D printing at the centimetric scale, with selective laser sintering, and at the micrometric scale, with two-photon lithography. Experimental results indicate an elementary auxeticity for small compressive strains but superior auxeticity for large strains. Significantly, the effective Young's modulus follows a parallel trend, becoming larger with increasing compressive strain. A theoretical model explains the variations of the elastic constants of the proposed metamaterials as a function of geometry parameters and provides a basic explanation for the appearance of the multistep behavior. Furthermore, simulation results demonstrate that the proposed metamaterial has the potential for designing metamaterials exhibiting tunable phononic band gaps. The design of reusable elastically stable multistep metamaterials, with tunable mechanical performances supporting large compression, is made possible thanks to their delocalized deformation mode.

References

1.
Frenzel
,
T.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2017
, “
Three-Dimensional Mechanical Metamaterials With a Twist
,”
Science
,
358
(
6366
), pp.
1072
1074
.
2.
Soukoulis
,
C. M.
,
Linden
,
S.
, and
Wegener
,
M.
,
2007
, “
Negative Refractive Index at Optical Wavelengths
,”
Science
,
315
(
5808
), pp.
47
49
.
3.
Milton
,
G.
,
2002
,
The Theory of Composites (Cambridge Monographs on Applied and Computational Mathematics)
,
Cambridge University Press
,
Cambridge, UK
.
4.
Kadic
,
M.
,
Milton
,
G. W.
,
van Hecke
,
M.
, and
Wegener
,
M.
,
2019
, “
3D Metamaterials
,”
Nat. Rev. Phys.
,
1
(
3
), pp.
198
210
.
5.
Chen
,
Y.
,
Abouelatta
,
M. A.
,
Wang
,
K.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2023
, “
Nonlocal Cable-Network Metamaterials
,”
Adv. Mater
,
35
(
15
), p.
2209988
.
6.
Craster
,
R.
,
Guenneau
,
S.
,
Muamer
,
K.
, and
Wegener
,
M.
,
2023
, “
Mechanical Metamaterials
,”
Rep. Prog. Phys. Phys. Soc. (Great Britain)
,
86
(
9
), p.
094501
.
7.
Coulais
,
C.
,
Sounas
,
D.
, and
Alu
,
A.
,
2017
, “
Static Non-Reciprocity in Mechanical Metamaterials
,”
Nature
,
542
(
7642
), pp.
461
464
.
8.
Coulais
,
C.
,
Sabbadini
,
A.
,
Vink
,
F.
, and
van Hecke
,
M.
,
2018
, “
Multi-Step Self-Guided Pathways for Shape-Changing Metamaterials
,”
Nature
,
561
(
7724
), pp.
512
515
.
9.
Grima
,
J. N.
, and
Evans
,
K. E.
,
2000
, “
Auxetic Behavior From Rotating Squares
,”
J. Mater. Sci. Lett.
,
19
(
17
), pp.
1563
1565
.
10.
Grima
,
J. N.
,
Jackson
,
R.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2000
, “
Do Zeolites Have Negative Poisson’s Ratios?
Adv. Mater.
,
12
(
24
), pp.
1912
1918
.
11.
Grima
,
J. N.
,
Winczewski
,
S.
,
Mizzi
,
L.
,
Grech
,
M. C.
,
Cauchi
,
R.
,
Gatt
,
R.
,
Attard
,
D.
,
Wojciechowski
,
K. W.
, and
Rybicki
,
J.
,
2015
, “
Tailoring Graphene to Achieve Negative Poisson’s Ratio Properties
,”
Adv. Mater.
,
27
(
8
), pp.
1455
1459
.
12.
Ghatak
,
A.
,
Brandenbourger
,
M.
,
Van Wezel
,
J.
, and
Coulais
,
C.
,
2020
, “
Observation of Non-Hermitian Topology and Its Bulk–Edge Correspondence in an Active Mechanical Metamaterial
,”
Proc. Natl. Acad. Sci. U.S.A.
,
117
(
47
), pp.
29561
29568
.
13.
Coulais
,
C.
,
Teomy
,
E.
,
De Reus
,
K.
,
Shokef
,
Y.
, and
Van Hecke
,
M.
,
2016
, “
Combinatorial Design of Textured Mechanical Metamaterials
,”
Nature
,
535
(
7613
), pp.
529
532
.
14.
Qu
,
J.
,
Gerber
,
A.
,
Mayer
,
F.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2017
, “
Experiments on Metamaterials With Negative Effective Static Compressibility
,”
Phys. Rev. X
,
7
(
4
), p.
041060
.
15.
Zhang
,
H.
,
Zhang
,
W.
,
Liao
,
Y.
,
Zhou
,
X.
,
Li
,
J.
,
Hu
,
G.
, and
Zhang
,
X.
,
2020
, “
Creation of Acoustic Vortex Knots
,”
Nat. Commun.
,
11
(
1
), p.
3956
.
16.
Chen
,
Y.
,
Li
,
X.
,
Hu
,
G.
,
Haberman
,
M. R.
, and
Huang
,
G.
,
2020
, “
An Active Mechanical Willis Meta-Layer With Asymmetric Polarizabilities
,”
Nat. Commun.
,
11
(
3681
), pp.
1
8
.
17.
Wang
,
Z.
,
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G.
,
2016
, “
Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency
,”
Adv. Mater.
,
28
(
44
), pp.
9857
9861
.
18.
Antonakakis
,
T.
,
Craster
,
R. V.
, and
Guenneau
,
S.
,
2013
, “
Asymptotics for Metamaterials and Photonic Crystals
,”
Proc. R. Soc. A
,
469
(
2152
), p.
20120533
.
19.
Guenneau
,
S.
, and
Craster
,
R. V.
,
2013
, “Fundamentals of Acoustic Metamaterials,”
Acoustic Metamaterials: Negative Refraction Imaging, Lensing Cloaking
,
R. V.
Craster
, and
S.
Guenneau
, eds., 1st ed.,
Springer
,
London, UK
, pp.
1
42
.
20.
Wu
,
Q.
,
Zhang
,
X.
,
Shivashankar
,
P.
,
Chen
,
Y.
, and
Huang
,
G.
,
2022
, “
Independent Flexural Wave Frequency Conversion by a Linear Active Metalayer
,”
Phys. Rev. Lett.
,
128
(
24
), p.
244301
.
21.
Chen
,
Y.
,
Li
,
X.
,
Scheibner
,
C.
,
Vitelli
,
V.
, and
Huang
,
G.
,
2021
, “
Realization of Active Metamaterials With Odd Micropolar Elasticity
,”
Nat. Commun.
,
12
(
1
), p.
5935
.
22.
Chen
,
X.
,
Moughames
,
J.
,
Ji
,
Q.
,
Martínez
,
J. A.
,
Tan
,
H.
,
Ulliac
,
G.
,
Laude
,
V.
, and
Kadic
,
M.
,
2022
, “
3D Lightweight Mechanical Metamaterial With Nearly Isotropic Inelastic Large Deformation Response
,”
J. Mech. Phys. Solids
,
169
(
12
), p.
105057
.
23.
Chen
,
X.
,
Ji
,
Q.
,
Martinez
,
J. A.
,
Tan
,
H.
,
Ulliac
,
G.
,
Laude
,
V.
, and
Kadic
,
M.
,
2022
, “
Closed Tubular Mechanical Metamaterial as Lightweight Load-Bearing Structure and Energy Absorber
,”
J. Mech. Phys. Solids
,
167
(
10
), p.
104957
.
24.
Chen
,
X.
,
Moughames
,
J.
,
Ji
,
Q.
,
Martínez
,
J. A.
,
Tan
,
H.
,
Adrar
,
S.
,
Laforge
,
N.
, et al.
,
2020
, “
Optimal Isotropic, Reusable Truss Lattice Material With Near-Zero Poisson's Ratio
,”
Extrem. Mech. Lett.
,
41
(
11
), p.
101048
.
25.
Iglesias Martínez
,
J. A.
,
Groß
,
M. F.
,
Chen
,
Y.
,
Frenzel
,
T.
,
Laude
,
V.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2021
, “
Experimental Observation of Roton-Like Dispersion Relations in Metamaterials
,”
Sci. Adv.
,
7
(
49
), p.
2189
.
26.
Tan
,
X.
,
Wang
,
L.
,
Zhu
,
S.
,
Chen
,
S.
,
Wang
,
B.
, and
Kadic
,
M.
,
2022
, “
A General Strategy for Performance Enhancement of Negative Stiffness Mechanical Metamaterials
,”
Eur. J. Mech.
,
96
(
11
), p.
104702
.
27.
Zhu
,
S.
,
Wang
,
B.
,
Chen
,
L.
,
Tan
,
X.
, and
Ma
,
L.
,
2022
, “
Enhance the Energy Dissipation Ability of Sleeve-Type Negative Stiffness Structures Via a Phase-Difference Mechanism
,”
Int. J. Mech. Sci.
,
213
(
1
), p.
106803
.
28.
Somers
,
P.
,
Münchinger
,
A.
,
Maruo
,
S.
,
Moser
,
C.
,
Xu
,
X.
, and
Wegener
,
M.
,
2023
, “
The Physics of 3d Printing With Light
,”
Nat. Rev. Phys.
,
6
(
2
), pp.
99
113
.
29.
Wegener
,
M.
,
2023
, “
3D Laser Micro- and Nanoprinting: 10 Years of Progress
,”
Laser 3D Manufacturing X, PC124120A (SPIE, 2023)
,
San Francisco, CA
,
Jan. 31–Feb. 2
.
30.
Porte
,
X.
,
Dinc
,
N. U.
,
Moughames
,
J.
,
Panusa
,
G.
,
Juliano
,
C.
,
Kadic
,
M.
,
Moser
,
C.
,
Brunner
,
D.
, and
Psaltis
,
D.
,
2021
, “
Direct (3 + 1) d Laser Writing of Graded-Index Optical Elements
,”
Optica
,
8
(
10
), pp.
1281
1287
.
31.
Fan
,
J.
,
Zhang
,
L.
,
Wei
,
S.
,
Zhang
,
Z.
,
Choi
,
S. K.
,
Song
,
B.
, and
Shi
,
Y.
,
2021
, “
A Review of Additive Manufacturing of Metamaterials and Developing Trends
,”
Mater. Today
,
50
(
11
), pp.
303
328
.
32.
Liu
,
S.-F.
,
Hou
,
Z.-W.
,
Lin
,
L.
,
Li
,
Z.
, and
Sun
,
H.-B.
,
2023
, “
3D Laser Nanoprinting of Functional Materials
,”
Adv. Funct. Mater.
,
33
(
39
), p.
2211280
.
33.
Baigarina
,
A.
,
Shehab
,
E.
, and
Ali
,
M. H.
,
2023
, “
Construction 3D Printing: A Critical Review and Future Research Directions
,”
Prog. Addit. Manuf.
,
8
(
6
), pp.
1393
1421
.
34.
Moughames
,
J.
,
Porte
,
X.
,
Larger
,
L.
,
Jacquot
,
M.
,
Kadic
,
M.
, and
Brunner
,
D.
,
2020
, “
3d Printed Multimode-Splitters for Photonic Interconnects
,”
Opt. Mater. Express
,
10
(
11
), pp.
2952
2961
.
35.
Hu
,
Z.
,
Wei
,
Z.
,
Wang
,
K.
,
Chen
,
Y.
,
Zhu
,
R.
,
Huang
,
G.
, and
Hu
,
G.
,
2023
, “
Engineering Zero Modes in Transformable Mechanical Metamaterials
,”
Nat. Commun.
,
14
(
1
), p.
1266
.
36.
Wang
,
L.
,
Martínez
,
J. A.
,
Ulliac
,
G.
,
Wang
,
B.
,
Laude
,
V.
, and
Kadic
,
M.
,
2023
, “
Non-Reciprocal and Non-Newtonian Mechanical Metamaterials
,”
Nat. Commun.
,
14
(
1
), p.
4778
.
37.
Tan
,
X.
,
Cao
,
B.
,
Liu
,
W.
,
Ji
,
C.
,
Wang
,
B.
, and
Li
,
S.
,
2024
, “
Odd Mechanical Metamaterials With Simultaneously Expanding or Contracting Under Both Compression and Tension
,”
Thin Walled Struct.
,
203
(
14
), p.
112225
.
38.
Janbaz
,
S.
,
Narooei
,
K.
,
Van Manen
,
T.
, and
Zadpoor
,
A.
,
2020
, “
Strain Rate–Dependent Mechanical Metamaterials
,”
Sci. Adv.
,
6
(
25
), p.
eaba0616
.
39.
Fang
,
X.
,
Wen
,
J.
,
Cheng
,
L.
,
Yu
,
D.
,
Zhang
,
H.
, and
Gumbsch
,
P.
,
2022
, “
Programmable Gear-Based Mechanical Metamaterials
,”
Nat. Mater.
,
21
(
8
), pp.
869
876
.
40.
Milton
,
G. W.
, and
Willis
,
J. R.
,
2007
, “
On Modifications of Newton’s Second Law and Linear Continuum Elastodynamics
,”
Proc. Royal Soc. A
,
463
(
2079
), pp.
855
880
.
41.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
42.
Münchinger
,
A.
,
Hsu
,
L.-Y.
,
Fürniß
,
F.
,
Blasco
,
E.
, and
Wegener
,
M.
,
2022
, “
3D Optomechanical Metamaterials
,”
Mater. Today
,
59
(
10
), pp.
9
17
.
43.
Meng
,
Z.
,
Liu
,
M.
,
Zhang
,
Y.
, and
Chen
,
C. Q.
,
2020
, “
Multi-Step Deformation Mechanical Metamaterials
,”
J. Mech. Phys. Solids
,
144
(
11
), p.
104095
.
44.
Liang
,
X.
,
Fu
,
H.
, and
Crosby
,
A. J.
,
2022
, “
Phase-Transforming Metamaterial With Magnetic Interactions
,”
Proc. Natl. Acad. Sci. U.S.A.
,
119
(
1
), p.
e2118161119
.
45.
Ji
,
Q.
,
Moughames
,
J.
,
Chen
,
X.
,
Fang
,
G.
,
Huaroto
,
J. J.
,
Laude
,
V.
,
Martínez
,
J. A.
, et al
,
2021
, “
4D Thermomechanical Metamaterials for Soft Microrobotics
,”
Commun. Mater.
,
2
(
1
), p.
93
.
46.
Farzaneh
,
A.
,
Pawar
,
N.
,
Portela
,
C. M.
, and
Hopkins
,
J. B.
,
2022
, “
Sequential Metamaterials With Alternating Poisson’s Ratios
,”
Nat. Commun.
,
13
(
1
), p.
1041
.
47.
Dudek
,
K. K.
,
Iglesias Martínez
,
J. A.
,
Ulliac
,
G.
,
Hirsinger
,
L.
,
Wang
,
L.
,
Laude
,
V.
, and
Kadic
,
M.
,
2023
, “
Micro-Scale Mechanical Metamaterial With a Controllable Transition in the Poisson’s Ratio and Band Gap Formation
,”
Adv. Mater.
,
35
(
20
), p.
2210993
.
48.
Wang
,
L.
,
Ulliac
,
G.
,
Wang
,
B.
,
Iglesias Martínez
,
J. A.
,
Dudek
,
K. K.
,
Laude
,
V.
, and
Kadic
,
M.
,
2022
, “
3D Auxetic Metamaterials With Elastically-Stable Continuous Phase Transition
,”
Adv. Sci.
,
9
(
34
), p.
2204721
.
49.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson’s Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
.
50.
Babaee
,
S.
,
Shim
,
J.
,
Weaver
,
J. C.
,
Chen
,
E. R.
,
Patel
,
N.
, and
Bertoldi
,
K.
,
2013
, “
3D Soft Metamaterials With Negative Poisson’s Ratio
,”
Adv. Mater.
,
25
(
36
), pp.
5044
5049
.
51.
Tan
,
X.
,
Martínez
,
J. A.
,
Ulliac
,
G.
,
Wang
,
B.
,
Wu
,
L.
,
Moughames
,
J.
,
Raschetti
,
M.
,
Laude
,
V.
, and
Kadic
,
M.
,
2022
, “
Single-Step-Lithography Micro-Stepper Based on Frictional Contact and Chiral Metamaterial
,”
Small
,
18
(
28
), p.
2202128
.
52.
Wang
,
Y.
,
Li
,
L.
,
Hofmann
,
D.
,
Andrade
,
J. E.
, and
Daraio
,
C.
,
2021
, “
Structured Fabrics With Tunable Mechanical Properties
,”
Nature
,
596
(
7871
), pp.
238
243
.
53.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
54.
Evans
,
K. E.
, and
Alderson
,
A.
,
2000
, “
Auxetic Materials: Functional Materials and Structures From Lateral Thinking!
,”
Adv. Mater.
,
12
(
9
), pp.
617
628
.
55.
Wang
,
L.
,
Tan
,
X.
,
Zhu
,
S.
,
Wang
,
B.
,
Li
,
S.
,
Zou
,
Y.
, and
Chen
,
S.
,
2021
, “
Directional Instability-Driven Strain-Dependent 3D Auxetic Metamaterials
,”
Int. J. Mech. Sci.
,
199
(
6
), p.
106408
.
56.
Wang
,
L.
,
Zhu
,
S.
,
Wang
,
B.
,
Tan
,
X.
,
Zou
,
Y.
,
Chen
,
S.
, and
Li
,
S.
,
2021
, “
Latitude-and-Longitude-Inspired Three-Dimensional Auxetic Metamaterials
,”
Extrem. Mech. Lett.
,
42
(
1
), p.
101142
.
57.
Yang
,
H.
,
Wang
,
B.
, and
Ma
,
L.
,
2019
, “
Mechanical Properties of 3D Double-U Auxetic Structures
,”
Int. J. Solids Struct.
,
180
(
12
), pp.
13
29
.
58.
Gao
,
Y.
,
Wei
,
X.
,
Han
,
X.
,
Zhou
,
Z.
, and
Xiong
,
J.
,
2021
, “
Novel 3D Auxetic Lattice Structures Developed Based on the Rotating Rigid Mechanism
,”
Int. J. Solids Struct.
,
233
(
12
), p.
111232
.
59.
Setyawan
,
W.
, and
Curtarolo
,
S.
,
2010
, “
High-Throughput Electronic Band Structure Calculations: Challenges and Tools
,”
Comput. Mater. Sci.
,
49
(
2
), pp.
299
312
.
60.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
.
61.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), pp.
1
13
.
62.
Christensen
,
J.
,
Kadic
,
M.
,
Kraft
,
O.
, and
Wegener
,
M.
,
2015
, “
Vibrant Times for Mechanical Metamaterials
,”
MRS Commun.
,
5
(
3
), pp.
453
462
.
63.
Bauer
,
J.
,
Kraus
,
J. A.
,
Crook
,
C.
,
Rimoli
,
J. J.
, and
Valdevit
,
L.
,
2021
, “
Tensegrity Metamaterials: Toward Failure-Resistant Engineering Systems Through Delocalized Deformation
,”
Adv. Mater.
,
33
(
10
), p.
2005647
.
64.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
You do not currently have access to this content.