Graphical Abstract Figure
Issue Section:
Research Papers
Abstract
This article reveals how apparently similar looking nanoparticles with same size, shape, and mass may exhibit widely varying Brownian diffusivity due to inherent features of nanoscale dynamics. Such variabilities may, in certain cases, reach order of magnitude fluctuations depending on the interfacial and bulk properties of the Brownian body. Accordingly, the theory explains several unanswered questions in connection to submicron systems including anomalous thermal properties of nanofluids and strangely varying transmittivities of biologically originated particulate droplets.
Issue Section:
Research Papers
References
1.
Lei
, Q.-L.
, Zheng
, W.
, Tang
, F.
, Wan
, X.
, Ni
, R.
, and Ma
, Y.-q.
, 2021
, “Self-Assembly of Isostatic Self-Dual Colloidal Crystals
,” Phys. Rev. Lett.
, 127
(1
), p. 018001
. 2.
Liu
, T.
, Langston
, M. L. K.
, Li
, D.
, Pigga
, J. M.
, Pichon
, C.
, Todea
, A. M.
, and Mueller
, A.
, 2011
, “Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution
,” Science
, 331
(6024
), pp. 1590
–1592
. 3.
Ikkala
, O.
, and ten Brinke
, G.
, 2002
, “Functional Materials Based on Self-Assembly of Polymeric Supramolecules
,” Science
, 295
(5564
), pp. 2407
–2409
. 4.
Cooley
, M.
, Sarode
, A.
, Hoore
, M.
, Fedosov
, D. A.
, Mitragotri
, S.
, and Sen Gupta
, A.
, 2018
, “Influence of Particle Size and Shape on Their Margination and Wall-Adhesion: Implications in Drug Delivery Vehicle Design Across Nano-to-Micro Scale
,” Nanoscale
, 10
(32
), pp. 15350
–15364
. 5.
Lavrentovich
, O. D.
, Lazo
, I.
, and Pishnyak
, O. P.
, 2010
, “Nonlinear Electrophoresis of Dielectric and Metal Spheres in a Nematic Liquid Crystal
,” Nature
, 467
(7318
), pp. 947
–950
. 6.
Skaug
, M. J.
, Schwemmer
, C.
, Fringes
, S.
, Rawlings
, C. D.
, and Knoll
, A. W.
, 2018
, “Nanofluidic Rocking Brownian Motors
,” Science
, 359
(6383
), pp. 1505
–1508
. 7.
Sharifi-Mood
, N.
, Koplik
, J.
, and Maldarelli
, C.
, 2013
, “Molecular Dynamics Simulation of the Motion of Colloidal Nanoparticles in a Solute Concentration Gradient and a Comparison to the Continuum Limit
,” Phys. Rev. Lett.
, 111
(18
), p. 184501
. 8.
Wang
, C. C.
, Prather
, K. A.
, Sznitman
, J.
, Jimenez
, J. L.
, Lakdawala
, S. S.
, Tufekci
, Z.
, and Marr
, L. C.
, 2021
, “Airborne Transmission of Respiratory Viruses
,” Science
, 373
(6558
). p. eabd9149
. 9.
Zhu
, H.
, 2013
, “Infectivity, Transmission, and Pathology of Human-Isolated H7N9 Influenza Virus in Ferrets and Pigs
,” Science
, 341
(6149
), p. 959
. DOI: 10.1126/science.123984410.
Richard
, M.
, Schrauwen
, E. J. A.
, de Graaf
, M.
, Bestebroer, T. M., Spronken, M. I. J., van Boheemen, S., de Meulder, D., et al., 2013
, “Limited Airborne Transmission of H7N9 Influenza A Virus Between Ferrets
,” Nature
, 501
(7468
), pp. 560
–563
. 11.
Imai
, M.
, Watanabe
, T.
, Hatta
, M.
, Das, S. C., Ozawa, M., Shinya, K., Zhong, G., et al., 2012
, “Experimental Adaptation of an Influenza H5 HA Confers Respiratory Droplet Transmission to a Reassortant H5 HA/H1N1 Virus in Ferrets
,” Nature
, 486
(7403
), pp. 420
–428
. 12.
Chen
, G.
, 2001
, “Ballistic-Diffusive Heat-Conduction Equations
,” Phys. Rev. Lett.
, 86
(11
), pp. 2297
–2300
. 13.
Eastman
, J. A.
, Choi
, S. U. S.
, Li
, S.
, Yu
, W.
, and Thompson
, L. J.
, 2001
, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,” Appl. Phys. Lett.
, 78
(6
), pp. 718
–720
. 14.
Kincaid
, J. M.
, and Cohen
, E. G. D.
, 2002
, “Nano- and Pico-Scale Transport Phenomena in Fluids
,” J. Stat. Phys.
, 109
(3/4
), pp. 361
–371
. 15.
Marconnet
, A. M.
, Panzer
, M. A.
, and Goodson
, K. E.
, 2013
, “Thermal Conduction Phenomena in Carbon Nanotubes and Related Nanostructured Materials
,” Rev. Mod. Phys.
, 85
(3
), pp. 1295
–1326
. 16.
Kostek
, S.
, Schwartz
, L. M.
, and Johnson
, D. L.
, 1992
, “Fluid Permeability in Porous Media: Comparison of Electrical Estimates With Hydrodynamical Calculations
,” Phys. Rev. B
, 45
(1
), pp. 186
–195
. 17.
Hansen
, J. S.
, Dyre
, J. C.
, and Daivis
, P.
, 2015
, “Continuum Nanofluidics
,” Langmuir
, 31
(49
), pp. 13275
–13289
. 18.
Liu
, B.
, and Bhattacharya
, S.
, 2020
, “Vector Field Solution for Brinkman Equation in Presence of Disconnected Spheres
,” Phys. Rev. Fluids
, 5
(10
), p. 104303
. 19.
Premlata
, A. R.
, and Wei
, H. H.
, 2019
, “The Basset Problem With Dynamic Slip: Slip-Induced Memory Effect and Slip-Stick Transition
,” J. Fluids Mech.
, 866
(1
), pp. 431
–449
. 20.
Pulkrabek
, W. W.
, and Wabrek
, R. M.
, 1990
, “The Permeability of Alumina Over an Extended Temperature Range
,” Int. J. Thermophys.
, 11
(1
), pp. 431
–449
. 21.
Bhattacharya
, S.
, and Gurung
, D.
, 2010
, “Derivation of Governing Equation Describing Time-Dependent Penetration Length in Channel Flows Driven by Non-Mechanical Forces
,” Anal. Chim. Acta
, 666
(1–2
), pp. 51
–54
. 22.
Bhattacharya
, S.
, Gurung
, D.
, and Navardi
, S.
, 2013
, “Radial Lift on a Suspended Finite-Sized Sphere Due to Fluid Inertia for Low-Reynolds-Number Flow Through a Cylinder
,” J. Fluid Mech.
, 722
(1
), pp. 159
–186
. 23.
Bhattacharya
, S.
, Gurung
, D.
, and Navardi
, S.
, 2013
, “Radial Distribution and Axial Dispersion of Suspended Particles Inside a Narrow Cylinder Due to Mildly Inertial Flow
,” Phys. Fluids
, 25
(3
), p. 033304
. 24.
Steiner
, U.
, Meller
, A.
, and Stavans
, J.
, 1995
, “Entropy Driven Phase Separation in Binary Emulsions
,” Phys. Rev. Lett.
, 74
(23
), p. 021504
. 25.
Indei
, T.
, Schieber
, J.
, and Cordoba
, A.
, 2012
, “Treating Inertia in Passive Microbead Rheology
,” Phys. Rev. E
, 85
(2
), p. 021504
. Copyright © 2024 by ASME
You do not currently have access to this content.