Abstract

Topologically interlocked materials and structures, which are assemblies of unbonded interlocking building blocks, are promising concepts for versatile structural applications. They have been shown to exhibit exceptional mechanical properties, including outstanding combinations of stiffness, strength, and toughness, beyond those achievable with common engineering materials. Recent work has established a theoretical upper limit for the strength and toughness of beam-like topologically interlocked structures. However, this theoretical limit is only attainable for structures with unrealistically high friction coefficients; therefore, it remains unknown whether it is achievable in actual structures. Here, we demonstrate that a hierarchical approach for topological interlocking, inspired by biological systems, overcomes these limitations and provides a path toward optimized mechanical performance. We consider beam-like topologically interlocked structures that present a sinusoidal surface morphology with controllable amplitude and wavelength and examine the properties of the structures using numerical simulations. The results show that the presence of surface morphologies increases the effective frictional strength of the interfaces and, if well-designed, enables us to reach the theoretical limit of the structural carrying capacity with realistic friction coefficients. Furthermore, we observe that the contribution of the surface morphology to the effective friction coefficient of the interface is well described by a criterion combining the surface curvature and surface gradient. Our study demonstrates the ability to architecture the surface morphology in beam-like topological interlocked structures to significantly enhance its structural performance.

References

1.
Djumas
,
L.
,
Molotnikov
,
A.
,
Simon
,
G. P.
, and
Estrin
,
Y.
,
2016
, “
Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry
,”
Sci. Rep.
,
6
(
1
), p.
26706
.
2.
Djumas
,
L.
,
Simon
,
G. P.
,
Estrin
,
Y.
, and
Molotnikov
,
A.
,
2017
, “
Deformation Mechanics of Non-Planar Topologically Interlocked Assemblies With Structural Hierarchy and Varying Geometry
,”
Sci. Rep.
,
7
(
1
), p.
11844
.
3.
Schaare
,
S.
,
Dyskin
,
A.
,
Estrin
,
Y.
,
Arndt
,
S.
,
Pasternak
,
E.
, and
Kanel-Belov
,
A.
,
2008
, “
Point Loading of Assemblies of Interlocked Cube-Shaped Elements
,”
Int. J. Eng. Sci.
,
46
(
12
), pp.
1228
1238
.
4.
Mirkhalaf
,
M.
,
Zhou
,
T.
, and
Barthelat
,
F.
,
2018
, “
Simultaneous Improvements of Strength and Toughness in Topologically Interlocked Ceramics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
37
), pp.
9128
9133
.
5.
Mirkhalaf
,
M.
,
Sunesara
,
A.
,
Ashrafi
,
B.
, and
Barthelat
,
F.
,
2019
, “
Toughness by Segmentation: Fabrication, Testing and Micromechanics of Architectured Ceramic Panels for Impact Applications
,”
Int. J. Solids Struct.
,
158
, pp.
52
65
.
6.
Yazdani Sarvestani
,
H.
,
Mirkhalaf
,
M.
,
Akbarzadeh
,
A. H.
,
Backman
,
D.
,
Genest
,
M.
, and
Ashrafi
,
B.
,
2019
, “
Multilayered Architectured Ceramic Panels With Weak Interfaces: Energy Absorption and Multi-hit Capabilities
,”
Mater. Des.
,
167
, p.
107627
.
7.
Dyskin
,
A. V.
,
Estrin
,
Y.
,
Kanel-Belov
,
A. J.
, and
Pasternak
,
E.
,
2001
, “
Toughening by Fragmentation–How Topology Helps
,”
Adv. Eng. Mater.
,
3
(
11
), pp.
885
888
.
8.
Dyskin
,
A. V.
,
Estrin
,
Y.
,
Kanel-Belov
,
A. J.
, and
Pasternak
,
E.
,
2001
, “
A New Concept in Design of Materials and Structures: Assemblies of Interlocked Tetrahedron-Shaped Elements
,”
Scr. Mater.
,
44
(
12
), pp.
2689
2694
.
9.
Dyskin
,
A.
,
Estrin
,
Y.
,
Pasternak
,
E.
,
Khor
,
H.
, and
Kanel-Belov
,
A.
,
2003
, “
Fracture Resistant Structures Based on Topological Interlocking With Non-Planar Contacts
,”
Adv. Eng. Mater.
,
5
(
3
), pp.
116
119
.
10.
Estrin
,
Y.
,
Krishnamurthy
,
V. R.
, and
Akleman
,
E.
,
2021
, “
Design of Architectured Materials Based on Topological and Geometrical Interlocking
,”
J. Mater. Res. Technol.
,
15
, pp.
1165
1178
.
11.
Khandelwal
,
S.
,
Siegmund
,
T.
,
Cipra
,
R. J.
, and
Bolton
,
J. S.
,
2015
, “
Adaptive Mechanical Properties of Topologically Interlocking Material Systems
,”
Smart Mater. Struct.
,
24
(
4
), p.
045037
.
12.
Dalaq
,
A. S.
, and
Barthelat
,
F.
,
2019
, “
Strength and Stability in Architectured Spine-Like Segmented Structures
,”
Int. J. Solids Struct.
,
171
, pp.
146
157
.
13.
Dalaq
,
A. S.
, and
Barthelat
,
F.
,
2020
, “
Manipulating the Geometry of Architectured Beams for Maximum Toughness and Strength
,”
Mater. Des.
,
194
, p.
108889
.
14.
Odessa
,
I.
, and
Shufrin
,
I.
,
2022
, “
Nonlinear Mechanics of Fragmented Beams
,”
Eur. J. Mech. A Solids
,
93
(
January
), p.
104488
.
15.
Koureas
,
I.
,
Pundir
,
M.
,
Feldfogel
,
S.
, and
Kammer
,
D. S.
,
2022
, “
On the Failure of Beam-Like Topologically Interlocked Structures
,”
Int. J. Solids Struct.
,
259
, p.
112029
.
16.
Casapulla
,
C.
,
Mousavian
,
E.
, and
Zarghani
,
M.
,
2019
, “
A Digital Tool to Design Structurally Feasible Semi-Circular Masonry Arches Composed of Interlocking Blocks
,”
Comput. Struct.
,
221
, pp.
111
126
.
17.
Khandelwal
,
S.
,
Siegmund
,
T.
,
Cipra
,
R.
, and
Bolton
,
J.
,
2012
, “
Transverse Loading of Cellular Topologically Interlocked Materials
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2394
2403
.
18.
Khandelwal
,
S.
,
Siegmund
,
T.
,
Cipra
,
R. J.
, and
Bolton
,
J. S.
,
2014
, “
Scaling of the Elastic Behavior of Two-Dimensional Topologically Interlocked Materials Under Transverse Loading
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031011
.
19.
Feldfogel
,
S.
,
Karapiperis
,
K.
,
Andrade
,
J.
, and
Kammer
,
D. S.
,
2023
, “
Scaling, Saturation, and Upper Bounds in the Failure of Topologically Interlocked Structures
,”
Int. J. Solids Struct.
,
269
, p.
112228
.
20.
Li
,
Y.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2011
, “
Stiffness and Strength of Suture Joints in Nature
,”
Phys. Rev. E
,
84
(
6
), p.
062904
.
21.
Li
,
Y.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2012
, “
Bioinspired, Mechanical, Deterministic Fractal Model for Hierarchical Suture Joints
,”
Phys. Rev. E
,
85
(
3
), p.
031901
.
22.
Lin
,
E.
,
Li
,
Y.
,
Weaver
,
J. C.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2014
, “
Tunability and Enhancement of Mechanical Behavior With Additively Manufactured Bio-Inspired Hierarchical Suture Interfaces
,”
J. Mater. Res.
,
29
(
17
), pp.
1867
1875
.
23.
Malik
,
I. A.
, and
Barthelat
,
F.
,
2016
, “
Toughening of Thin Ceramic Plates Using Bioinspired Surface Patterns
,”
Int. J. Solids Struct.
,
97–98
(
Oct
), pp.
389
399
.
24.
Malik
,
I. A.
,
Mirkhalaf
,
M.
, and
Barthelat
,
F.
,
2017
, “
Bio-Inspired ‘Jigsaw’-Like Interlocking Sutures: Modeling, Optimization, 3D Printing and Testing
,”
J. Mech. Phys. Solids
,
102
, pp.
224
238
.
25.
Malik
,
I. A.
, and
Barthelat
,
F.
,
2018
, “
Bioinspired Sutured Materials for Strength and Toughness: Pullout Mechanisms and Geometric Enrichments
,”
Int. J. Solids Struct.
,
138
, pp.
118
133
.
26.
Khoshhesab
,
M. M.
, and
Li
,
Y.
,
2018
, “
Mechanical Behavior of 3D Printed Biomimetic Koch Fractal Contact and Interlocking
,”
Extreme Mech. Lett.
,
24
, pp.
58
65
.
27.
Wang
,
W.
,
Sun
,
Y.
,
Lu
,
Y.
,
Wang
,
J.
,
Cao
,
Y.
, and
Zhang
,
C.
,
2021
, “
Tensile Behavior of Bio-Inspired Hierarchical Suture Joint With Uniform Fractal Interlocking Design
,”
J. Mech. Behav. Biomed. Mater.
,
113
(
March 2020
), p.
104137
.
28.
Rezaee Javan
,
A.
,
Seifi
,
H.
,
Lin
,
X.
, and
Xie
,
Y. M.
,
2020
, “
Mechanical Behaviour of Composite Structures Made of Topologically Interlocking Concrete Bricks With Soft Interfaces
,”
Mater. Des.
,
186
(
January
), p.
108347
.
29.
Bathe
,
K.-J.
,
Ramm
,
E.
, and
Wilson
,
E. L.
,
1975
, “
Finite Element Formulations for Large Deformation Dynamic Analysis
,”
Int. J. Numer. Meth. Eng.
,
9
(
2
), pp.
353
386
.
30.
Konyukhov
,
A.
, and
Schweizerhof
,
K.
,
2004
, “
Contact Formulation Via a Velocity Description Allowing Efficiency Improvements in Frictionless Contact Analysis
,”
Comput. Mech.
,
33
(
3
), pp.
165
173
.
31.
Schweizerhof
,
K.
, and
Konyukhov
,
A.
,
2005
, “
Covariant Description for Frictional Contact Problems
,”
Comput. Mech.
,
35
(
3
), pp.
190
213
.
32.
Laursen
,
T. A.
,
2003
,
Computational Contact and Impact Mechanics
,
Springer
,
Berlin, Heidelberg
.
33.
Wriggers
,
P.
, and
Laursen
,
T. A.
,
2007
, “
Computational Contact MechanicsCISM Courses and Lectures, Vol. 498
”.
34.
Yastrebov
,
V. A.
, and
Breitkopf
,
P.
,
2013
,
Numerical Methods in Contact Mechanics
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
35.
Zavarise
,
G.
, and
De Lorenzis
,
L.
,
2009
, “
The Node-to-Segment Algorithm for 2D Frictionless Contact: Classical Formulation and Special Cases
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
41–44
), pp.
3428
3451
.
36.
Zavarise
,
G.
, and
De Lorenzis
,
L.
,
2009
, “
A Modified Node-to-Segment Algorithm Passing the Contact Patch Test
,”
Int. J. Numer. Meth. Eng.
,
79
(
4
), pp.
379
416
.
37.
Ranganath Nayak
,
P.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Tribol.
,
93
(
3
), pp.
398
407
.
38.
Yastrebov
,
V. A.
,
Anciaux
,
G.
, and
Molinari
,
J. F.
,
2012
, “
Contact Between Representative Rough Surfaces
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
86
(
3
), pp.
1
4
.
You do not currently have access to this content.