Abstract

The use of general tensegrity systems that incorporate rigid bodies beyond axially loaded members has garnered increasing attention in practical applications. Recent preliminary studies have been conducted on the analysis and form design of general tensegrity systems with disconnecting rigid bodies. However, existing methods cannot account for connections between different rigid bodies. In practical applications, general tensegrity systems may have interconnected rigid bodies, rendering the analysis method proposed in previous studies inapplicable. To address this issue, this work proposes a comprehensive and unified analysis method for general tensegrity systems. The proposed formulation allows for the incorporation of connections between rigid bodies and general tensegrity systems with supports into the developed framework, enabling uniform analysis. Equilibrium and compatibility equations are derived through an energy approach combined with the Lagrange multiplier method. Self-stress states and mechanism modes are then computed based on these formulations. The stiffness of the mechanism mode is analyzed and validated using both the product force method and the reduced geometric stiffness matrix method. Furthermore, a self-stress design approach based on semi-definite programming (SDP) is proposed to determine feasible member forces that can stabilize general tensegrity systems. Illustrative examples are presented to verify the effectiveness of the proposed approach. This study expands the scope of the analysis theory for tensegrity systems and provides a fundamental and unified analysis approach that can be applied to any type of tensegrity system.

References

1.
Fuller
,
R. B.
,
1962
, “Tensile-Integrity Structures,” US Patent No. 3063521.
2.
Snelson
,
K.
,
2012
, “
The Art of Tensegrity
,”
Int. J. Space Struct.
,
27
(
2–3
), pp.
71
80
.
3.
Geiger
,
D. H.
,
Stefaniuk
,
A.
, and
Chen
,
D.
,
1986
, “
The Design and Construction of Two Cable Domes for the Korean Olympics
,”
Proceedings of the IASS Symposium on Shells, Membranes and Space Frames
,
Amsterdam, The Netherlands
, Vol. 2, pp.
265
272
.
4.
Pellegrino
,
S.
,
1992
, “
A Class of Tensegrity Domes
,”
Int. J. Space Struct.
,
7
(
2
), pp.
127
142
.
5.
Tibert
,
G.
,
2002
, “
Deployable Tensegrity Structures for Space Applications
,”
Doctoral dissertation
,
KTH
,
Sweden
.
6.
Ganga
,
P. L.
,
Micheletti
,
A.
,
Podio-Guidugli
,
P.
,
Scolamiero
,
L.
,
Tibert
,
G.
, and
Zolesi
,
V.
,
2016
, “Tensegrity Rings for Deployable Space Antennas: Concept, Design, Analysis, and Prototype Testing,”
Variational Analysis and Aerospace Engineering
,
Springer
,
New York
, pp.
269
304
.
7.
Paul
,
C.
,
Valero-Cuevas
,
F. J.
, and
Lipson
,
H.
,
2006
, “
Design and Control of Tensegrity Robots for Locomotion
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
944
957
.
8.
Caluwaerts
,
K.
,
Despraz
,
J.
,
Işçen
,
A.
,
Sabelhaus
,
A. P.
,
Bruce
,
J.
,
Schrauwen
,
B.
, and
SunSpiral
,
V.
,
2014
, “
Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation
,”
J. R. Soc. Interface
,
11
(
98
), pp.
20140520
.
9.
Ingber
,
D. E.
,
1997
, “
Tensegrity: The Architectural Basis of Cellular Mechanotransduction
,”
Annu. Rev. Physiol.
,
59
(
1
), pp.
575
599
.
10.
Ingber
,
D. E.
,
Wang
,
N.
, and
Stamenović
,
D.
,
2014
, “
Tensegrity, Cellular Biophysics, and the Mechanics of Living Systems
,”
Rep. Prog. Phys.
,
77
(
4
), p.
046603
.
11.
Tibert
,
A.
, and
Pellegrino
,
S.
,
2003
, “
Review of Form-Finding Methods for Tensegrity Structures
,”
Int. J. Space Struct.
,
18
(
4
), pp.
209
223
.
12.
Xue
,
Y.
,
Luo
,
Y.
, and
Xu
,
X.
,
2020
, “
Form-Finding of Cable-Strut Structures With Given Cable Forces and Strut Lengths
,”
Mech. Res. Commun.
,
106
, p.
103530
.
13.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2021
, “
A Unifying Framework for Form-Finding and Topology-Finding of Tensegrity Structures
,”
Comput. Struct.
,
247
, p.
106486
.
14.
Xu
,
X.
,
Huang
,
S.
,
Wang
,
Y.
, and
Luo
,
Y.
,
2023
, “
A Generalized Objective Function Based on Weight Coefficient for Topology-Finding of Tensegrity Structures
,”
Appl. Math. Model.
,
115
, pp.
541
567
.
15.
Ali
,
N. B. H.
, and
Smith
,
I.
,
2010
, “
Dynamic Behavior and Vibration Control of a Tensegrity Structure
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1285
1296
.
16.
Li
,
S.
,
Xu
,
X.
,
Tu
,
J.
,
Wang
,
Y.
, and
Luo
,
Y.
,
2020
, “
Research on a New Class of Planar Tensegrity Trusses Consisting of Repetitive Units
,”
Int. J. Steel Struct.
,
20
(
5
), pp.
1
14
.
17.
Xue
,
Y.
,
Luo
,
Y.
,
Wang
,
Y.
,
Xu
,
X.
,
Wan
,
H.-P.
, and
Shen
,
Y.
,
2023
, “
Mechanical Analysis of Frictional Continuous Cable Systems Considering the Influence of Load Path
,”
J. Eng. Mech.
,
149
(
2
), p.
04022111
.
18.
Santos
,
F. A.
,
Rodrigues
,
A.
, and
Micheletti
,
A.
,
2015
, “
Design and Experimental Testing of an Adaptive Shape-Morphing Tensegrity Structure, With Frequency Self-Tuning Capabilities, Using Shape-Memory Alloys
,”
Smart Mater. Struct.
,
24
(
10
), p.
105008
. 2017011903505200
19.
Wang
,
Y.
, and
Senatore
,
G.
,
2021
, “
Design of Adaptive Structures Through Energy Minimization: Extension to Tensegrity
,”
Struct. Multidiscipl. Optim.
,
64
, pp.
1079
1110
.
20.
Chen
,
M.
,
Fraddosio
,
A.
,
Micheletti
,
A.
,
Pavone
,
G.
,
Piccioni
,
M. D.
, and
Skelton
,
R. E.
,
2023
, “
Energy-Efficient Cable-Actuation Strategies of the V-Expander Tensegrity Structure Subjected to Five Shape Changes
,”
Mech. Res. Commun.
,
127
, p.
104026
.
21.
Flemons
,
T. E.
,
2007
, “The Geometry of Anatomy.” http://intensiondesigns.ca/geometry-of-anatomy/.
22.
Mirletz
,
B. T.
,
Park
,
I.-W.
,
Flemons
,
T. E.
,
Agogino
,
A. K.
,
Quinn
,
R. D.
, and
SunSpiral
,
V.
,
2014
, “
Design and Control of Modular Spine-Like Tensegrity Structures
,”
Presented at the 6th World Conference on Structural Control and Monitoring
,
Barcelona, Spain
,
July 15
.
23.
Luo
,
J.
,
Wu
,
Z.
,
Xu
,
X.
,
Chen
,
Y.
,
Liu
,
Z.
, and
Ming
,
L.
,
2022
, “
Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5183
5190
.
24.
Liu
,
Y.
,
Bi
,
Q.
,
Yue
,
X.
,
Wu
,
J.
,
Yang
,
B.
, and
Li
,
Y.
,
2022
, “
A Review on Tensegrity Structures-Based Robots
,”
Mech. Mach. Theory
,
168
, p.
104571
.
25.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Vol. 1
,
Springer
,
New York
.
26.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2020
, “
Topology Design of General Tensegrity With Rigid Bodies
,”
Int. J. Solids Struct.
,
202
, pp.
278
298
.
27.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
(
4
), pp.
409
428
.
28.
Deng
,
H.
, and
Kwan
,
A.
,
2005
, “
Unified Classification of Stability of Pin-Jointed Bar Assemblies
,”
Int. J. Solids Struct.
,
42
(
15
), pp.
4393
4413
.
29.
Calladine
,
C. R.
, and
Pellegrino
,
S.
,
1991
, “
First-Order Infinitesimal Mechanisms
,”
Int. J. Solids Struct.
,
27
(
4
), pp.
505
515
.
30.
Guest
,
S.
,
2006
, “
The Stiffness of Prestressed Frameworks: A Unifying Approach
,”
Int. J. Solids Struct.
,
43
(
3–4
), pp.
842
854
.
31.
Pellegrino
,
S.
,
1990
, “
Analysis of Prestressed Mechanisms
,”
Int. J. Solids Struct.
,
26
(
12
), pp.
1329
1350
.
32.
Kuznetsov
,
E.
,
1991
, “
Systems With Infinitesimal Mobility: Part I—Matrix Analysis and First-Order Infinitesimal Mobility
,”
ASME J. Appl. Mech.
,
28
(
2
), pp.
513
519
.
33.
Chen
,
B.
, and
Jiang
,
H.
,
2022
, “
Instability Results From Purely Rotational Stiffness for General Tensegrity Structure With Rigid Bodies
,”
Mech. Mach. Theory
,
167
, p.
104485
.
34.
Ma
,
S.
,
Chen
,
M.
,
Peng
,
Z.
,
Yuan
,
X.
, and
Skelton
,
R.
,
2022
, “
The Equilibrium and Form-Finding of General Tensegrity Systems With Rigid Bodies
,”
Eng. Struct.
,
266
, p.
114618
.
35.
El-Lishani
,
S.
,
Nooshin
,
H.
, and
Disney
,
P.
,
2005
, “
Investigating the Statical Stability of Pin-Jointed Structures Using Genetic Algorithm
,”
Int. J. Space Struct.
,
20
(
1
), pp.
53
68
.
36.
Xu
,
X.
, and
Luo
,
Y.
,
2010
, “
Force Finding of Tensegrity Systems Using Simulated Annealing Algorithm
,”
J. Struct. Eng.
,
136
(
8
), pp.
1027
1031
.
37.
Wang
,
Y.
, and
Xu
,
X.
,
2019
, “
Prestress Design of Tensegrity Structures Using Semidefinite Programming
,”
Adv. Civil Eng.
,
2019
, pp.
1
9
.
38.
Tran
,
H. C.
, and
Lee
,
J.
,
2010
, “
Initial Self-Stress Design of Tensegrity Grid Structures
,”
Comput. Struct.
,
88
(
9
), pp.
558
566
.
39.
Irons
,
B. M.
, and
Draper
,
K. J.
,
1965
, “
Lagrange Multiplier Techniques in Structural Analysis
,”
AIAA J.
,
3
(
6
), pp.
1172
1174
.
40.
Ben-Israel
,
A.
, and
Greville
,
T. N.
,
2003
,
Generalized Inverses: Theory and Applications
, Vol. 15,
Springer Science & Business Media
,
Berlin
.
41.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
,
2006
, “
Adaptive Force Density Method for Form-Finding Problem of Tensegrity Structures
,”
Int. J. Solids Struct.
,
43
(
18
), pp.
5658
5673
.
42.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2023
, “
Stability Conditions for General Tensegrity With Rigid Bodies
,”
J. Eng. Mech
.
43.
Hangai
,
Y.
, and
Wu
,
M.
,
1999
, “
Analytical Method of Structural Behaviours of a Hybrid Structure Consisting of Cables and Rigid Structures
,”
Eng. Struct.
,
21
(
8
), pp.
726
736
.
44.
Angeles
,
J.
, and
Kecskemethy
,
A.
,
2014
,
Kinematics and Dynamics of Multi-body Systems
, Vol. 360,
Springer
,
New York
.
45.
Wang
,
Y.
, and
Senatore
,
G.
,
2020
, “
Extended Integrated Force Method for the Analysis of Prestress-Stable Statically and Kinematically Indeterminate Structures
,”
Int. J. Solids Struct.
,
202
, pp.
798
815
.
46.
Alizadeh
,
F.
,
Haeberly
,
J.-P. A.
, and
Overton
,
M. L.
,
1998
, “
Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results
,”
SIAM J. Optim.
,
8
(
3
), pp.
746
768
.
47.
Lasserre
,
J.-B. B.
, and
Miguel
,
A. F.
,
2011
,
Handbook on Semidefinite, Conic and Polynomial Optimization
,
Springer
,
New York
.
You do not currently have access to this content.