Abstract

Avoiding stress concentrations is essential to achieve robust parts since failure tends to originate at such concentrations. With recent advances in multimaterial additive manufacturing, it is possible to alter the stress (or strain) distribution by adjusting the material properties in selected locations. Here, we investigate the use of grayscale digital light processing (g-DLP) 3D printing to create modulus gradients around areas of high stress. These gradients prevent failure by redistributing high stresses (or strains) to the neighboring material. The improved material distributions are calculated using finite element analysis. The much-enhanced properties are demonstrated experimentally for thin plates with circular, triangular, and elliptical holes. This work suggests that multimaterial additive manufacturing techniques like g-DLP printing provide a unique opportunity to create tougher engineering materials and parts.

References

1.
Zhang
,
Y. S.
, and
Khademhosseini
,
A.
,
2017
, “
Advances in Engineering Hydrogels
,”
Science
,
356
(
6337
), p.
eaaf3627
.
2.
Sun
,
T. L.
,
Kurokawa
,
T.
,
Kuroda
,
S.
,
Ihsan
,
A. B.
,
Akasaki
,
T.
,
Sato
,
K.
,
Haque
,
M. A.
,
Nakajima
,
T.
, and
Gong
,
J. P.
,
2013
, “
Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity
,”
Nat. Mater.
,
12
(
10
), pp.
932
937
.
3.
Liff
,
S. M.
,
Kumar
,
N.
, and
McKinley
,
G. H.
,
2007
, “
High-Performance Elastomeric Nanocomposites via Solvent-Exchange Processing
,”
Nat. Mater.
,
6
(
1
), pp.
76
83
.
4.
Pei
,
A.
,
Malho
,
J.-M.
,
Ruokolainen
,
J.
,
Zhou
,
Q.
, and
Berglund
,
L. A.
,
2011
, “
Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer With Low Volume Fraction of Cellulose Nanocrystals
,”
Macromolecules
,
44
(
11
), pp.
4422
4427
.
5.
Kuang
,
X.
,
Chen
,
K.
,
Dunn
,
C. K.
,
Wu
,
J.
,
Li
,
V. C. F.
, and
Qi
,
H. J.
,
2018
, “
3D Printing of Highly Stretchable, Shape-Memory and Self-Healing Elastomer Toward Novel 4D Printing
,”
ACS Appl. Mater. Interfaces
,
10
(
8
), pp.
7381
7388
.
6.
Wang
,
Z.
,
Xiang
,
C.
,
Yao
,
X.
,
Le Floch
,
P.
,
Mendez
,
J.
, and
Suo
,
Z.
,
2019
, “
Stretchable Materials of High Toughness and Low Hysteresis
,”
Proc. Natl. Acad. Sci.
,
116
(
13
), pp.
5967
5972
.
7.
Libonati
,
F.
, and
Buehler
,
M. J.
,
2017
, “
Advanced Structural Materials by Bioinspiration
,”
Adv. Eng. Mater.
,
19
(
5
), p.
1600787
.
8.
Dimas
,
L. S.
,
Bratzel
,
G. H.
,
Eylon
,
I.
, and
Buehler
,
M. J.
,
2013
, “
Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D Printing, and Testing
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4629
4638
.
9.
Sola
,
A.
,
Bellucci
,
D.
, and
Cannillo
,
V.
,
2016
, “
Functionally Graded Materials for Orthopedic Applications—An Update on Design and Manufacturing
,”
Biotechnol. Adv.
,
34
(
5
), pp.
504
531
.
10.
Gupta
,
A.
, and
Talha
,
M.
,
2015
, “
Recent Development in Modeling and Analysis of Functionally Graded Materials and Structures
,”
Prog. Aerosp. Sci.
,
79
, pp.
1
14
.
11.
Chen
,
P.-Y.
,
McKittrick
,
J.
, and
Meyers
,
M. A.
,
2012
, “
Biological Materials: Functional Adaptations and Bioinspired Designs
,”
Prog. Mater. Sci.
,
57
(
8
), pp.
1492
1704
.
12.
Liu
,
Z.
,
Meyers
,
M. A.
,
Zhang
,
Z.
, and
Ritchie
,
R. O.
,
2017
, “
Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications
,”
Prog. Mater. Sci.
,
88
, pp.
467
498
.
13.
Roach
,
D. J.
,
Hamel
,
C. M.
,
Wu
,
J.
,
Kuang
,
X.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2017
, “
4-D Printing: Potential Applications of 3-D Printed Active Composite Materials
,”
J. Homeland Defense Secur. Inf. Anal. Center
,
4
(
4
), pp.
20
27
.
14.
Wegst
,
U. G. K.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
15.
Rossetti
,
L.
,
Kuntz
,
L. A.
,
Kunold
,
E.
,
Schock
,
J.
,
Müller
,
K. W.
,
Grabmayr
,
H.
,
Stolberg-Stolberg
,
J.
, et al
,
2017
, “
The Microstructure and Micromechanics of the Tendon–Bone Insertion
,”
Nat. Mater.
,
16
(
6
), pp.
664
670
.
16.
Jindal
,
U. C.
,
1983
, “
Reduction of Stress Concentration Around a Hole in a Uniaxially Loaded Plate
,”
J. Strain Anal. Eng. Des.
,
18
(
2
), pp.
135
141
.
17.
Muc
,
A.
, and
Ulatowska
,
A.
,
2012
, “
Local Fibre Reinforcement of Holes in Composite Multilayered Plates
,”
Compos. Struct.
,
94
(
4
), pp.
1413
1419
.
18.
Wang
,
G.
,
2018
, “
Homogenized and Localized Stress Reconfigurations of Solid or Hollow Fiber Reinforced Materials in a Multi-Scale Framework
,”
Compos. Struct.
,
184
, pp.
1099
1110
.
19.
Boddeti
,
N.
,
Tang
,
Y.
,
Maute
,
K.
,
Rosen
,
D. W.
, and
Dunn
,
M. L.
,
2020
, “
Optimal Design and Manufacture of Variable Stiffness Laminated Continuous Fiber Reinforced Composites
,”
Sci. Rep.
,
10
(
1
), p.
16507
.
20.
Shah
,
D. K.
,
Joshi
,
S. P.
, and
Chan
,
W. S.
,
1994
, “
Stress Concentration Reduction in a Plate With a Hole Using Piezoceramic Layers
,”
Smart Mater. Struct.
,
3
(
3
), pp.
302
308
.
21.
Kokkinis
,
D.
,
Bouville
,
F.
, and
Studart
,
A. R.
,
2018
, “
3D Printing of Materials With Tunable Failure via Bioinspired Mechanical Gradients
,”
Adv. Mater.
,
30
(
19
), p.
1705808
.
22.
Yang
,
Q.
,
Gao
,
C.-F.
, and
Chen
,
W.
,
2010
, “
Stress Analysis of a Functional Graded Material Plate With a Circular Hole
,”
Arch. Appl. Mech.
,
80
(
8
), pp.
895
907
.
23.
Sburlati
,
R.
,
2013
, “
Stress Concentration Factor Due to a Functionally Graded Ring Around a Hole in an Isotropic Plate
,”
Int. J. Solids Struct.
,
50
(
22
), pp.
3649
3658
.
24.
Leben
,
L. M.
,
Schwartz
,
J. J.
,
Boydston
,
A. J.
,
D’Mello
,
R. J.
, and
Waas
,
A. M.
,
2018
, “
Optimized Heterogeneous Plates With Holes Using 3D Printing via Vat Photo-Polymerization
,”
Addit. Manuf.
,
24
, pp.
210
216
.
25.
Gu
,
G. X.
,
Chen
,
C.-T.
,
Richmond
,
D. J.
, and
Buehler
,
M. J.
,
2018
, “
Bioinspired Hierarchical Composite Design Using Machine Learning: Simulation, Additive Manufacturing, and Experiment
,”
Mater. Horiz.
,
5
(
5
), pp.
939
945
.
26.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
, et al
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
27.
Zhang
,
H.
,
Guo
,
X.
,
Wu
,
J.
,
Fang
,
D.
, and
Zhang
,
Y.
,
2018
, “
Soft Mechanical Metamaterials With Unusual Swelling Behavior and Tunable Stress-Strain Curves
,”
Sci. Adv.
,
4
(
6
), p.
eaar8535
.
28.
Wu
,
S.
,
Eichenberger
,
J.
,
Dai
,
J.
,
Chang
,
Y.
,
Ghalichechian
,
N.
, and
Zhao
,
R. R.
,
2022
, “
Magnetically Actuated Reconfigurable Metamaterials as Conformal Electromagnetic Filters
,”
Adv. Intell. Syst.
,
4
(
9
), p.
2200106
.
29.
Ma
,
C. P.
,
Wu
,
S.
,
Ze
,
Q.
,
Kuang
,
X.
,
Zhang
,
R.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2021
, “
Magnetic Multimaterial Printing for Multimodal Shape Transformation With Tunable Properties and Shiftable Mechanical Behaviors
,”
ACS Appl. Mater. Interfaces
,
13
(
11
), pp.
12639
12648
.
30.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
31.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
32.
Roach
,
D. J.
,
Hamel
,
C. M.
,
Dunn
,
C. K.
,
Johnson
,
M. V.
,
Kuang
,
X.
, and
Qi
,
H. J.
,
2019
, “
The m4 3D Printer: A Multi-Material Multi-Method Additive Manufacturing Platform for Future 3D Printed Structures
,”
Addit. Manuf.
,
29
, p.
100819
.
33.
Lee
,
C.-U.
,
Vandenbrande
,
J.
,
Goetz
,
A. E.
,
Ganter
,
M. A.
,
Storti
,
D. W.
, and
Boydston
,
A. J.
,
2019
, “
Room Temperature Extrusion 3D Printing of Polyether Ether Ketone Using a Stimuli-Responsive Binder
,”
Addit. Manuf.
,
28
, pp.
430
438
.
34.
Hegde
,
M.
,
Meenakshisundaram
,
V.
,
Chartrain
,
N.
,
Sekhar
,
S.
,
Tafti
,
D.
,
Williams
,
C. B.
, and
Long
,
T. E.
,
2017
, “
3D Printing All-Aromatic Polyimides Using Mask-Projection Stereolithography: Processing the Nonprocessable
,”
Adv. Mater.
,
29
(
31
), p.
1701240
.
35.
Kuang
,
X.
,
Zhao
,
Z.
,
Chen
,
K.
,
Fang
,
D.
,
Kang
,
G.
, and
Qi
,
H. J.
,
2018
, “
High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing
,”
Macromol. Rapid Commun.
,
39
(
7
), p.
1700809
.
36.
Matsuzaki
,
R.
,
Ueda
,
M.
,
Namiki
,
M.
,
Jeong
,
T.-K.
,
Asahara
,
H.
,
Horiguchi
,
K.
,
Nakamura
,
T.
,
Todoroki
,
A.
, and
Hirano
,
Y.
,
2016
, “
Three-Dimensional Printing of Continuous-Fiber Composites by In-Nozzle Impregnation
,”
Sci. Rep.
,
6
(
1
), p.
23058
.
37.
Colosi
,
C.
,
Shin
,
S. R.
,
Manoharan
,
V.
,
Massa
,
S.
,
Costantini
,
M.
,
Barbetta
,
A.
,
Dokmeci
,
M. R.
,
Dentini
,
M.
, and
Khademhosseini
,
A.
,
2016
, “
Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink
,”
Adv. Mater.
,
28
(
4
), pp.
677
684
.
38.
Qiu
,
K.
,
Zhao
,
Z.
,
Haghiashtiani
,
G.
,
Guo
,
S.-Z.
,
He
,
M.
,
Su
,
R.
,
Zhu
,
Z.
, et al
,
2018
, “
3D Printed Organ Models With Physical Properties of Tissue and Integrated Sensors
,”
Adv. Mater. Technol.
,
3
(
3
), p.
1700235
.
39.
Derby
,
B.
,
2012
, “
Printing and Prototyping of Tissues and Scaffolds
,”
Science
,
338
(
6109
), pp.
921
926
.
40.
Studart
,
A. R.
,
2016
, “
Additive Manufacturing of Biologically-Inspired Materials
,”
Chem. Soc. Rev.
,
45
(
2
), pp.
359
376
.
41.
Porter
,
M. M.
,
Ravikumar
,
N.
,
Barthelat
,
F.
, and
Martini
,
R.
,
2017
, “
3D-Printing and Mechanics of Bio-Inspired Articulated and Multi-Material Structures
,”
J. Mech. Behav. Biomed. Mater.
,
73
(
Supplement C
), pp.
114
126
.
42.
Cazón
,
A.
,
Morer
,
P.
, and
Matey
,
L.
,
2014
, “
PolyJet Technology for Product Prototyping: Tensile Strength and Surface Roughness Properties
,”
Proc. Inst. Mech. Eng. B
,
228
(
12
), pp.
1664
1675
.
43.
Chen
,
K.
,
Zhang
,
L.
,
Kuang
,
X.
,
Li
,
V.
,
Lei
,
M.
,
Kang
,
G.
,
Wang
,
Z. L.
, and
Qi
,
H. J.
,
2019
, “
Dynamic Photomask-Assisted Direct Ink Writing Multimaterial for Multilevel Triboelectric Nanogenerator
,”
Adv. Funct. Mater.
,
29
(
33
), p.
1903568
.
44.
Hansen
,
C. J.
,
Saksena
,
R.
,
Kolesky
,
D. B.
,
Vericella
,
J. J.
,
Kranz
,
S. J.
,
Muldowney
,
G. P.
,
Christensen
,
K. T.
, and
Lewis
,
J. A.
,
2013
, “
High-Throughput Printing via Microvascular Multinozzle Arrays
,”
Adv. Mater.
,
25
(
1
), pp.
96
102
.
45.
Kuang
,
X.
,
Wu
,
J.
,
Chen
,
K.
,
Zhao
,
Z.
,
Ding
,
Z.
,
Hu
,
F.
,
Fang
,
D.
, and
Qi
,
H. J.
,
2019
, “
Grayscale Digital Light Processing 3D Printing for Highly Functionally Graded Materials
,”
Sci. Adv.
,
5
(
5
), p.
eaav5790
.
46.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
, et al
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
.
47.
Montgomery
,
S. M.
,
Demoly
,
F.
,
Zhou
,
K.
, and
Qi
,
H. J.
,
2023
, “
Pixel-Level Grayscale Manipulation to Improve Accuracy in Digital Light Processing 3D Printing
,”
Adv. Funct. Mater.
, p.
2213252
.
48.
Tanaka
,
M.
,
Montgomery
,
S. M.
,
Yue
,
L.
,
Wei
,
Y.
,
Song
,
Y.
,
Nomura
,
T.
, and
Qi
,
H. J.
,
2023
, “
Turing Pattern-Based Design and Fabrication of Inflatable Shape-Morphing Structures
,”
Sci. Adv.
,
9
(
6
), p.
eade438
.
49.
Zhao
,
Z.
,
Wu
,
J.
,
Mu
,
X.
,
Chen
,
H.
,
Qi
,
H. J.
, and
Fang
,
D.
,
2017
, “
Origami by Frontal Photopolymerization
,”
Sci. Adv.
,
3
(
4
), p.
e1602326
.
50.
Zhao
,
Z.
,
Wu
,
J.
,
Mu
,
X.
,
Chen
,
H.
,
Qi
,
H. J.
, and
Fang
,
D.
,
2017
, “
Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing
,”
Macromol. Rapid Commun.
,
38
(
13
), p.
1600625
.
You do not currently have access to this content.