Abstract

The emerging skin-integrated devices have been embedded with various functions, whose ideal implementation typically relies on intact bonding to curved substrates. However, the predeformation, which originates from the attachment of a thin film to a curved substrate, attempts to peel the film (i.e., self-debonding). It calls for strong enough interfacial adhesion in applications. On the other hand, too strong adhesion can destroy the surfaces of devices and substrates when the devices are peeled off after service. Therefore, seeking critical conditions becomes essential. Herein, we study the self-debonding of an adhesive thin film on a convex cylindrical surface. Taking Dugdale’s constant-stress law to describe the interfacial traction–separation relationship, we analytically unveil that the self-debonding behaviors are not solely determined by the interfacial energy. Instead, both the interfacial strength and critical interfacial separation are decisive. We thus obtain a phase diagram consisting of two critical conditions correspondingly. Similar results appear in the finite element analysis with the trapezoidal cohesive law, quantitatively showing the evolution of deflection and interfacial detachment force. Furthermore, we find that the circular film, symmetrically adhering to a spherical surface with small deflection, can still share similar self-debonding behavior. Our results provide guidance on how to stick a thin film on a convex cylindrical or spherical surface well with proper interfacial adhesion.

References

1.
Yu
,
X.
,
Xie
,
Z.
,
Yu
,
Y.
,
Lee
,
J.
,
Vazquez-Guardado
,
A.
,
Luan
,
H.
,
Ruban
,
J.
, et al
,
2019
, “
Skin-Integrated Wireless Haptic Interfaces for Virtual and Augmented Reality
,”
Nature
,
575
(
7783
), pp.
473
479
.
2.
Yuk
,
H.
,
Varela
,
C. E.
,
Nabzdyk
,
C. S.
,
Mao
,
X.
,
Padera
,
R. F.
,
Roche
,
E. T.
, and
Zhao
,
X.
,
2019
, “
Dry Double-Sided Tape for Adhesion of Wet Tissues and Devices
,”
Nature
,
575
(
7781
), pp.
169
174
.
3.
Autumn
,
K.
,
Sitti
,
M.
,
Liang
,
Y. A.
,
Peattie
,
A. M.
,
Hansen
,
W. R.
,
Sponberg
,
S.
,
Kenny
,
T. W.
,
Fearing
,
R.
,
Israelachvili
,
J. N.
, and
Full
,
R. J.
,
2002
, “
Evidence for Van der Waals Adhesion in Gecko Setae
,”
Proc. Natl. Acad. Sci. USA
,
99
(
19
), pp.
12252
12256
.
4.
Cheng
,
B.
,
Yu
,
J.
,
Arisawa
,
T.
,
Hayashi
,
K.
,
Richardson
,
J. J.
,
Shibuta
,
Y.
, and
Ejima
,
H.
,
2022
, “
Ultrastrong Underwater Adhesion on Diverse Substrates Using Non-Canonical Phenolic Groups
,”
Nat. Commun.
,
13
(
1
), p.
1892
.
5.
Liu
,
Y.
,
Wang
,
P.
,
Su
,
X.
,
Xu
,
L.
,
Tian
,
Z.
,
Wang
,
H.
,
Ji
,
G.
, and
Huang
,
J.
,
2022
, “
Electrically Programmable Interfacial Adhesion for Ultrastrong Hydrogel Bonding
,”
Adv. Mater.
,
34
(
13
), p.
2108820
.
6.
Kim
,
D.-H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y.-S.
,
Kim
,
R.-H.
,
Wang
,
S.
,
Wu
,
J.
, et al
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
7.
Yang
,
J. C.
,
Mun
,
J.
,
Kwon
,
S. Y.
,
Park
,
S.
,
Bao
,
Z.
, and
Park
,
S.
,
2019
, “
Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics
,”
Adv. Mater.
,
31
(
48
), p.
e1904765
.
8.
Kwak
,
M. K.
,
Jeong
,
H.-E.
, and
Suh
,
K. Y.
,
2011
, “
Rational Design and Enhanced Biocompatibility of a Dry Adhesive Medical Skin Patch
,”
Adv. Mater.
,
23
(
34
), pp.
3949
3953
.
9.
Hure
,
J.
,
Roman
,
B.
, and
Bico
,
J.
,
2012
, “
Stamping and Wrinkling of Elastic Plates
,”
Phys. Rev. Lett.
,
109
(
5
), p.
054302
.
10.
Grason
,
G. M.
, and
Davidovitch
,
B.
,
2013
, “
Universal Collapse of Stress and Wrinkle-to-Scar Transition in Spherically Confined Crystalline Sheets
,”
Proc. Natl. Acad. Sci. USA
,
110
(
32
), pp.
12893
12898
.
11.
Davidovitch
,
B.
,
Sun
,
Y.
, and
Grason
,
G. M.
,
2019
, “
Geometrically Incompatible Confinement of Solids
,”
Proc. Natl. Acad. Sci. USA
,
116
(
5
), pp.
1483
1488
.
12.
Zhou
,
Y.
,
Chen
,
Y.
,
Liu
,
B.
,
Wang
,
S.
,
Yang
,
Z.
, and
Hu
,
M.
,
2015
, “
Mechanics of Nanoscale Wrinkling of Graphene on a Non-Developable Surface
,”
Carbon
,
84
, pp.
263
271
.
13.
Majidi
,
C.
, and
Fearing
,
R. S.
,
2008
, “
Adhesion of an Elastic Plate to a Sphere
,”
Proc. R. Soc. A
,
464
(
2093
), pp.
1309
1317
.
14.
Kendall
,
K.
,
1975
, “
Thin-Film Peeling—The Elastic Term
,”
J. Phys. D: Appl. Phys.
,
8
(
13
), pp.
1449
1452
.
15.
Yin
,
H.
,
Peng
,
Z.
,
Yao
,
Y.
,
Chen
,
S.
, and
Gao
,
H.
,
2022
, “
A General Solution to the Maximum Detachment Force in Thin Film Peeling
,”
Int. J. Solids Struct.
,
242
, p.
111546
.
16.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1998
, “
Interface Strength, Work of Adhesion and Plasticity in the Peel Test
,”
Int. J. Fract.
,
93
(
1
), pp.
315
333
.
17.
Long
,
H.
,
Liu
,
Y.
, and
Wei
,
Y.
,
2022
, “
Debonding Characterization of Stiff Film/Compliant Substrate Systems Based on the Bilinear Cohesive Zone Model
,”
Eng. Fract. Mech.
,
265
, p.
108363
.
18.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
19.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
20.
Geim
,
A. K.
, and
Grigorieva
,
I. V.
,
2013
, “
Van der Waals Heterostructures
,”
Nature
,
499
(
7459
), pp.
419
425
.
21.
Novoselov
,
K. S.
,
Mishchenko
,
A.
,
Carvalho
,
A.
, and
Castro Neto
,
A. H.
,
2016
, “
2D Materials and Van der Waals Heterostructures
,”
Science
,
353
(
6298
), p.
aac9439
.
22.
Liu
,
Y.
,
Huang
,
Y.
, and
Duan
,
X.
,
2019
, “
Van der Waals Integration Before and Beyond Two-Dimensional Materials
,”
Nature
,
567
(
7748
), pp.
323
333
.
23.
Pan
,
F.
,
Wang
,
G.
,
Liu
,
L.
,
Chen
,
Y.
,
Zhang
,
Z.
, and
Shi
,
X.
,
2019
, “
Bending Induced Interlayer Shearing, Rippling and Kink Buckling of Multilayered Graphene Sheets
,”
J. Mech. Phys. Solids
,
122
, pp.
340
363
.
24.
Han
,
E.
,
Yu
,
J.
,
Annevelink
,
E.
,
Son
,
J.
,
Kang
,
D. A.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Ertekin
,
E.
,
Huang
,
P. Y.
, and
van der Zande
,
A. M.
,
2019
, “
Ultrasoft Slip-Mediated Bending in Few-Layer Graphene
,”
Nat. Mater.
,
19
(
3
), pp.
305
309
.
25.
Ma
,
X.
,
Liu
,
L.
,
Zhang
,
Z.
, and
Wei
,
Y.
,
2021
, “
A Method to Determine the Geometry-Dependent Bending Stiffness of Multilayer Graphene Sheets
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
011004
.
26.
Wang
,
G.
,
Dai
,
Z.
,
Xiao
,
J.
,
Feng
,
S.
,
Weng
,
C.
,
Liu
,
L.
,
Xu
,
Z.
,
Huang
,
R.
, and
Zhang
,
Z.
,
2019
, “
Bending of Multilayer Van der Waals Materials
,”
Phys. Rev. Lett.
,
123
(
11
), p.
116101
.
27.
Ma
,
X.
,
Liu
,
L.
,
Zhang
,
Z.
, and
Wei
,
Y.
,
2022
, “
Bending Stiffness of Circular Multilayer van der Waals Material Sheets
,”
ASME J. Appl. Mech.
,
89
(
3
), p.
031011
.
28.
Kruglova
,
O.
,
Brau
,
F.
,
Villers
,
D.
, and
Damman
,
P.
,
2011
, “
How Geometry Controls the Tearing of Adhesive Thin Films on Curved Surfaces
,”
Phys. Rev. Lett.
,
107
(
16
), p.
164303
.
29.
Ma
,
X.
, and
Wei
,
Y.
,
2022
, “
Programming Fracture Patterns of Thin Films
,”
Phys. Rev. E
,
105
(
2
), p.
025002
.
30.
Jiang
,
H.
,
Khang
,
D.-Y.
,
Song
,
J.
,
Sun
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2007
, “
Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports
,”
Proc. Natl. Acad. Sci. USA
,
104
(
40
), pp.
15607
15612
.
31.
Dai
,
Z.
,
Rao
,
Y.
, and
Lu
,
N.
,
2022
, “
Two-Dimensional Crystals on Adhesive Substrates Subjected to Uniform Transverse Pressure
,”
Int. J. Solids Struct.
,
257
, p.
111829
.
You do not currently have access to this content.