Abstract

The innovative design of microstructure topology is of great significance to improve the energy absorption performance of honeycombs. In this paper, by embedding a hexagonal substructure in each inclined wall of the traditional reentrant (RE) honeycomb, a novel auxetic honeycomb, called reentrant combined-wall (RCW) honeycomb, is developed for improving energy absorption. Combining the experimental methods, numerical simulations, and analytical analyses, we systematically studied the in-plane quasi-static behaviors of the proposed honeycomb structure. It can be found that the deformation of the RCW honeycomb has a transitional stage, which makes a significant stress enhancement. During the crushing process, the Poisson’s ratio of the RCW honeycomb keeps negative and is lower than that of the RE honeycomb. Besides, numerical and analytical analyses show that the stress-strain response of the RCW honeycomb has a good designability. Further, the analysis of specific energy absorption (SEA) is also performed, in which the RCW honeycomb shows a significant superiority over the RE honeycomb, with the SEA value almost twice that of the latter. Therefore, it can be concluded that the proposed novel structure has tangible improvements in the crushing strength, auxetic performance, and energy absorption, which deserves more attention in future work.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
2.
Sun
,
Y.
, and
Li
,
Q. M.
,
2018
, “
Dynamic Compressive Behaviour of Cellular Materials: A Review of Phenomenon, Mechanism and Modelling
,”
Int. J. Impact Eng.
,
112
, pp.
74
115
.
3.
Zhang
,
J.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Large Deformation and Energy Absorption of Additively Manufactured Auxetic Materials and Structures: A Review
,”
Compos. Part B: Eng.
,
201
, p.
108340
.
4.
Banhart
,
J.
,
2001
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
.
5.
Ryan
,
S.
,
Hedman
,
T.
, and
Christiansen
,
E. L.
,
2010
, “
Honeycomb Vs. Foam: Evaluating Potential Upgrades to ISS Module Shielding
,”
Acta Astronaut.
,
67
(
7–8
), pp.
818
825
.
6.
Wang
,
T.
,
Li
,
Z.
,
Wang
,
L.
, and
Hulbert
,
G. M.
,
2020
, “
Crashworthiness Analysis and Collaborative Optimization Design for a Novel Crash-Box With Re-Entrant Auxetic Core
,”
Struct. Multidiscip. Optim.
,
62
(
4
), pp.
2167
2179
.
7.
Yang
,
T. Y.
,
Li
,
T.
,
Tobber
,
L.
, and
Pan
,
X.
,
2020
, “
Experimental and Numerical Study of Honeycomb Structural Fuses
,”
Eng. Struct.
,
204
, p.
109814
.
8.
Liu
,
R.
,
Xu
,
S.
,
Luo
,
X.
, and
Liu
,
Z.
,
2020
, “
Theoretical and Numerical Analysis of Mechanical Behaviors of a Metamaterial-Based Shape Memory Polymer Stent
,”
Polymers
,
12
(
8
), p.
1784
.
9.
Sun
,
W.
, and
Cheng
,
W.
,
2017
, “
Finite Element Model Updating of Honeycomb Sandwich Plates Using a Response Surface Model and Global Optimization Technique
,”
Struct. Multidiscipl. Optimiz.
,
55
(
1
), pp.
121
139
.
10.
Hou
,
X.
,
Deng
,
Z.
, and
Zhang
,
K.
,
2016
, “
Dynamic Crushing Strength Analysis of Auxetic Honeycombs
,”
Acta Mech. Solida Sin.
,
29
(
5
), pp.
490
501
.
11.
Scarpa
,
F.
, and
Tomlin
,
P. J.
,
2000
, “
On the Transverse Shear Modulus of Negative Poisson's Ratio Honeycomb Structures
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
8
), pp.
717
720
.
12.
Argatov
,
I. I.
,
Guinovart-Díaz
,
R.
, and
Sabina
,
F. J.
,
2012
, “
On Local Indentation and Impact Compliance of Isotropic Auxetic Materials From the Continuum Mechanics Viewpoint
,”
Int. J. Eng. Sci.
,
54
, pp.
42
57
.
13.
Liu
,
W.
,
Wang
,
N.
,
Luo
,
T.
, and
Lin
,
Z.
,
2016
, “
In-Plane Dynamic Crushing of Re-Entrant Auxetic Cellular Structure
,”
Mater. Des.
,
100
, pp.
84
91
.
14.
Tan
,
H.
,
He
,
Z.
,
Li
,
E.
,
Cheng
,
A.
,
Chen
,
T.
,
Tan
,
X.
,
Li
,
Q.
, and
Xu
,
B.
,
2021
, “
Crashworthiness Design and Multi-Objective Optimization of a Novel Auxetic Hierarchical Honeycomb Crash Box
,”
Struct. Multidiscipl. Optim.
,
64
(
4
), pp.
2009
2024
.
15.
Imbalzano
,
G.
,
Linforth
,
S.
,
Ngo
,
T. D.
,
Lee
,
P. V. S.
, and
Tran
,
P.
,
2018
, “
Blast Resistance of Auxetic and Honeycomb Sandwich Panels: Comparisons and Parametric Designs
,”
Compos. Struct.
,
183
, pp.
242
261
.
16.
Qi
,
C.
,
Remennikov
,
A.
,
Pei
,
L.
,
Yang
,
S.
,
Yu
,
Z.
, and
Ngo
,
T. D.
,
2017
, “
Impact and Close-In Blast Response of Auxetic Honeycomb-Cored Sandwich Panels: Experimental Tests and Numerical Simulations
,”
Compos. Struct.
,
180
, pp.
161
178
.
17.
Imbalzano
,
G.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Lee
,
P. V. S.
,
2016
, “
A Numerical Study of Auxetic Composite Panels Under Blast Loadings
,”
Compos. Struct.
,
135
, pp.
339
352
.
18.
Chen
,
G.
,
Cheng
,
Y.
,
Zhang
,
P.
,
Cai
,
S.
, and
Liu
,
J.
,
2021
, “
Blast Resistance of Metallic Double Arrowhead Honeycomb Sandwich Panels With Different Core Configurations Under the Paper Tube-Guided Air Blast Loading
,”
Int. J. Mech. Sci.
,
201
, p.
106457
.
19.
Qiao
,
J.
, and
Chen
,
C. Q.
,
2015
, “
Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051007
.
20.
Chen
,
Z.
,
Liu
,
L.
,
Gao
,
S.
,
Wu
,
W.
,
Xiao
,
D.
, and
Li
,
Y.
,
2021
, “
Dynamic Response of Sandwich Beam With Star-Shaped Reentrant Honeycomb Core Subjected to Local Impulsive Loading
,”
Thin-Walled Struct.
,
161
, p.
107420
.
21.
Liu
,
H.
, and
Wang
,
L.
,
2022
, “
Design 3D Improved Star-Shaped Honeycomb With Different Tip Angles From 2D Analytical Star-Shaped Model
,”
Compos. Struct.
,
283
, p.
115154
.
22.
Chen
,
Y.
, and
Fu
,
M.
,
2017
, “
A Novel Three-Dimensional Auxetic Lattice Meta-Material With Enhanced Stiffness
,”
Smart Mater. Struct.
,
26
(
10
), p.
105029
.
23.
Liu
,
Y.
, and
Zhang
,
X.
,
2009
, “
The Influence of Cell Micro-Topology on the In-Plane Dynamic Crushing of Honeycombs
,”
Int. J. Impact Eng.
,
36
(
1
), pp.
98
109
.
24.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
,
94
, pp.
114
173
.
25.
Wan
,
H.
,
Ohtaki
,
H.
,
Kotosaka
,
S.
, and
Hu
,
G.
,
2004
, “
A Study of Negative Poisson’s Ratios in Auxetic Honeycombs Based on a Large Deflection Model
,”
Eur. J. Mech.—A/Solids.
,
23
(
1
), pp.
95
106
.
26.
Gao
,
Q.
,
Liao
,
W.
, and
Wang
,
L.
,
2020
, “
An Analytical Model of Cylindrical Double-Arrowed Honeycomb With Negative Poisson’s Ratio
,”
Int. J. Mech. Sci.
,
173
, p.
105400
.
27.
Gao
,
Q.
,
Wang
,
L.
,
Zhou
,
Z.
,
Ma
,
Z. D.
,
Wang
,
C.
, and
Wang
,
Y.
,
2018
, “
Theoretical, Numerical and Experimental Analysis of Three-Dimensional Double-V Honeycomb
,”
Mater. Des.
,
139
, pp.
380
391
.
28.
Ingrole
,
A.
,
Hao
,
A.
, and
Liang
,
R.
,
2017
, “
Design and Modeling of Auxetic and Hybrid Honeycomb Structures for I n-Plane Property Enhancement
,”
Mater. Des.
,
117
, pp.
72
83
.
29.
Zied
,
K.
,
Osman
,
M.
, and
Elmahdy
,
T.
,
2015
, “
Enhancement of the In-Plane Stiffness of the Hexagonal Re-Entrant Auxetic Honeycomb Cores
,”
Phys. Status Solidi B
,
252
(
12
), pp.
2685
2692
.
30.
Lu
,
Z.
,
Li
,
X.
,
Yang
,
Z.
, and
Xie
,
F.
,
2016
, “
Novel Structure With Negative Poisson’s Ratio and Enhanced Young’s Modulus
,”
Compos. Struct.
,
138
, pp.
243
252
.
31.
Fu
,
M.
,
Chen
,
Y.
, and
Hu
,
L.
,
2017
, “
Bilinear Elastic Characteristic of Enhanced Auxetic Honeycombs
,”
Compos. Struct.
,
175
, pp.
101
110
.
32.
Tatlıer
,
M. S.
,
Öztürk
,
M.
, and
Baran
,
T.
,
2021
, “
Linear and Non-Linear In-Plane Behaviour of a Modified Re-Entrant Core Cell
,”
Eng. Struct.
,
234
, p.
111984
.
33.
Li
,
X.
,
Wang
,
Q.
,
Yang
,
Z.
, and
Lu
,
Z.
,
2019
, “
Novel Auxetic Structures With Enhanced Mechanical Properties
,”
Extreme Mech. Lett.
,
27
, pp.
59
65
.
34.
Fu
,
M.
,
Chen
,
Y.
, and
Hu
,
L.
,
2017
, “
A Novel Auxetic Honeycomb With Enhanced In-Plane Stiffness and Buckling Strength
,”
Compos. Struct.
,
160
, pp.
574
585
.
35.
Li
,
D.
,
Yin
,
J.
,
Dong
,
L.
, and
Lakes
,
R. S.
,
2018
, “
Strong Re-Entrant Cellular Structures With Negative Poisson’s Ratio
,”
J. Mater. Sci.
,
53
(
5
), pp.
3493
3499
.
36.
Xu
,
M.
,
Xu
,
Z.
,
Zhang
,
Z.
,
Lei
,
H.
,
Bai
,
Y.
, and
Fang
,
D.
,
2019
, “
Mechanical Properties and Energy Absorption Capability of AuxHex Structure Under In-Plane Compression: Theoretical and Experimental Studies
,”
Int. J. Mech. Sci.
,
159
, pp.
43
57
.
37.
Wang
,
H.
,
Lu
,
Z.
,
Yang
,
Z.
, and
Li
,
X.
,
2019
, “
A Novel Re-Entrant Auxetic Honeycomb With Enhanced In-Plane Impact Resistance
,”
Compos. Struct.
,
208
, pp.
758
770
.
38.
Wei
,
L.
,
Zhao
,
X.
,
Yu
,
Q.
, and
Zhu
,
G.
,
2020
, “
A Novel Star Auxetic Honeycomb With Enhanced In-Plane Crushing Strength
,”
Thin-Walled Struct.
,
149
, p.
106623
.
39.
Lu
,
H.
,
Wang
,
X.
, and
Chen
,
T.
,
2021
, “
In-Plane Dynamics Crushing of a Combined Auxetic Honeycomb With Negative Poisson’s Ratio and Enhanced Energy Absorption
,”
Thin-Walled Struct.
,
160
, p.
107366
.
40.
Logakannan
,
K. P.
,
Ramachandran
,
V.
,
Rengaswamy
,
J.
,
Gao
,
Z.
, and
Ruan
,
D.
,
2020
, “
Quasi-Static and Dynamic Compression Behaviors of a Novel Auxetic Structure
,”
Compos. Struct.
,
254
, p.
112853
.
41.
Qi
,
C.
,
Jiang
,
F.
,
Remennikov
,
A.
,
Pei
,
L.
,
Liu
,
J.
,
Wang
,
J.
,
Liao
,
X.-W.
, and
Yang
,
S.
,
2020
, “
Quasi-Static Crushing Behavior of Novel Re-Entrant Circular Auxetic Honeycombs
,”
Compos. Part B: Eng.
,
197
, p.
108117
.
42.
Qi
,
C.
,
Jiang
,
F.
,
Yang
,
S.
, and
Remennikov
,
A.
,
2021
, “
Multi-scale Characterization of Novel Re-Entrant Circular Auxetic Honeycombs Under Quasi-Static Crushing
,”
Thin-Walled Struct.
,
169
, p.
108314
.
43.
Ruan
,
D.
,
Lu
,
G.
,
Wang
,
B.
, and
Yu
,
T. X.
,
2003
, “
In-Plane Dynamic Crushing of Honeycombs—A Finite Element Study
,”
Int. J. Impact Eng.
,
28
(
2
), pp.
161
182
.
44.
Qi
,
C.
,
Jiang
,
F.
,
Yu
,
C.
, and
Yang
,
S.
,
2019
, “
In-Plane Crushing Response of Tetra-Chiral Honeycombs
,”
Int. J. Impact Eng.
,
130
, pp.
247
265
.
45.
Zhang
,
X.
,
Hao
,
H.
,
Tian
,
R.
,
Xue
,
Q.
,
Guan
,
H.
, and
Yang
,
X.
,
2022
, “
Quasi-Static Compression and Dynamic Crushing Behaviors of Novel Hybrid Re-Entrant Auxetic Metamaterials With Enhanced Energy-Absorption
,”
Compos. Struct.
,
288
, p.
115399
.
46.
Hazrat Ali
,
M.
,
Batai
,
S.
, and
Karim
,
D.
,
2021
, “
Material Minimization in 3D Printing With Novel Hybrid Cellular Structures
,”
Mater. Today: Proc.
,
42
, pp.
1800
1809
.
47.
Hönig
,
A.
, and
Stronge
,
W. J.
,
2002
, “
In-Plane Dynamic Crushing of Honeycomb. Part I: Crush Band Initiation and Wave Trapping
,”
Int. J. Mech. Sci.
,
44
(
8
), pp.
1665
1696
.
48.
Zhang
,
J.
,
Lu
,
G.
,
Wang
,
Z.
,
Ruan
,
D.
,
Alomarah
,
A.
, and
Durandet
,
Y.
,
2018
, “
Large Deformation of an Auxetic Structure in Tension: Experiments and Finite Element Analysis
,”
Compos. Struct.
,
184
, pp.
92
101
.
49.
Wang
,
H.
,
Lu
,
Z.
,
Yang
,
Z.
, and
Li
,
X.
,
2019
, “
In-Plane Dynamic Crushing Behaviors of a Novel Auxetic Honeycomb With Two Plateau Stress Regions
,”
Int. J. Mech. Sci.
,
151
, pp.
746
759
.
50.
Zhang
,
X.
,
An
,
L.
,
Ding
,
H.
,
Zhu
,
X.
, and
El-Rich
,
M.
,
2015
, “
The Influence of Cell Micro-Structure on the In-Plane Dynamic Crushing of Honeycombs With Negative Poisson’s Ratio
,”
J. Sandw. Struct. Mater.
,
17
(
1
), pp.
26
55
.
You do not currently have access to this content.