Abstract

Multiple cracks interaction is an important topic in fracture mechanics. The related solutions are helpful to understand the failure process and the toughening mechanism of brittle materials. Previous works on the topic were most for homogenous material. In this paper, we extend the analysis and examine the problem of interaction of two coaxial penny-shaped cracks near an arbitrarily graded interface in functionally graded materials (FGMs). The cracks are modelled as circular edge dislocation loops. An efficient dislocation solution for FGMs and Fredholm integral equation technique are used to solve the crack problem. Both exact solution using a system of integral equations and approximate solution by virtue of Kachanov’s method are presented. Unlike most existing analytical treatments to the crack problems in FGMs with the assumption of special gradation, i.e., graded shear modulus according to special functions and constant Poisson’s ratio, the present method is more flexible since it can consider arbitrarily graded shear modulus and Poisson’s ratio. The validity of the present solutions is checked by comparing to existing results in literatures for two stacked penny-shaped cracks in homogenous material and a penny-shaped crack near a graded interface with exponentially graded shear modulus. Finally, a practical example of double cracks interaction in a real epoxy-glass FGM with measured data of material properties is considered. The error due to the assumption of special gradation is also discussed.

References

1.
Isida
,
M.
,
Hirota
,
K.
,
Noguchi
,
H.
, and
Yoshida
,
T.
,
1985
, “
Two Parallel Elliptical Cracks in an Infinite Solid Subjected to Tension
,”
Int. J. Fract.
,
27
(
1
), pp.
31
48
.
2.
Lam
,
K.
, and
Phua
,
S.
,
1991
, “
Multiple Crack Interaction and Its Effect on Stress Intensity Factor
,”
Eng. Fract. Mech.
,
40
(
3
), pp.
585
592
.
3.
Collins
,
W.
,
1962
, “
Some Axially Symmetric Stress Distributions in Elastic Solids Containing Penny-Shaped Cracks I. Cracks in an Infinite Solid and a Thick Plate
,”
Proc. R. Soc. London Ser. A Math. Phys. Sci.
,
266
(
1326
), pp.
359
386
.
4.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1973
,
The Stress Analysis of Cracks
,
Del Research Corporation
.
5.
Lam
,
K. Y.
, and
Phua
,
S. P.
,
1991
, “
Multiple Crack Interaction and its Effect on Stress Intensity Factor
,”
Eng. Fract. Mech.
,
40
(
3
), pp.
585
592
.
6.
Selvadurai
,
A. P. S.
,
1979
, “
An Approximate Analysis of an Internally Loaded Elastic Plate Containing an Infinite row of Closely Spaced Parallel Cracks
,”
Eng. Fract. Mech.
,
11
(
2
), pp.
285
290
.
7.
Singh
,
B.M.
,
Selvadurai
,
A. P. S.
, and
Danyluk
,
H. T.
,
1986
, “
Two Moving Cracks in a Layered Composite
,”
Eng. Fract. Mech.
,
23
(
6
), pp.
991
1003
.
8.
Xu
,
W.
, and
Wu
,
X. R.
,
2012
, “
Weight Functions and Strip-Yield Model Analysis for Three Collinear Cracks
,”
Eng. Fract. Mech.
,
85
, pp.
73
87
.
9.
Xiao
,
Z.
,
Lim
,
M.
, and
Liew
,
K.
,
1994
, “
Stress Intensity Factors for Two Coplanar Penny-Shaped Cracks Under Uniaxial Tension
,”
Int. J. Eng. Sci.
,
32
(
2
), pp.
303
311
.
10.
Zhan
,
S.
, and
Wang
,
T.
,
2006
, “
Interactions of Penny-Shaped Cracks in Three-Dimensional Solids
,”
Acta Mech. Sin.
,
22
(
4
), pp.
341
353
.
11.
Wu
,
T.-H.
,
Li
,
X.-Y.
, and
Tang
,
H.-P.
,
2021
, “
Three-Dimensional Fields in an Infinite Transversely Isotropic Magneto-Electro-Elastic Space With Multiple Coplanar Penny-Shaped Cracks
,”
Int. J. Eng. Sci.
,
159
(
1
), p.
103434
.
12.
Selvadurai
,
A. P. S.
, and
Singh
,
B. M.
,
1987
, “
Axisymmetric Problems for an Externally Cracked Elastic Solid. I. Effect of a Penny-Shaped Crack
,”
Int. J. Eng. Sci.
,
25
(
8
), pp.
1049
1057
.
13.
Yao
,
H.
, and
Zhang
,
C.
,
2022
, “
A Generalized Solution to the Combo-Crack Problem—I. Pressure Load on Crack Surface
,”
J. Mech. Phys. Solids
,
159
, p.
104783
.
14.
Yao
,
H.
, and
Zhang
,
C.
,
2022
, “
A Generalized Solution to the Combo-Crack Problem—II. Remote Load
,”
J. Mech. Phys. Solids
,
164
, p.
104919
.
15.
Koizumi
,
M.
,
1993
, “
The Concept of FGM
,”
Ceram. Trans.
,
34
, pp.
3
10
.
16.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
,
2013
,
Functionally Graded Materials: Design, Processing and Applications
, Vol.
5
,
Springer Science & Business Media
.
17.
Jitcharoen
,
J.
,
Padture
,
N. P.
,
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1998
, “
Hertzian-Crack Suppression in Ceramics With Elastic-Modulus-Graded Surfaces
,”
J. Am. Ceram. Soc.
,
81
(
9
), pp.
2301
2308
.
18.
Suresh
,
S.
,
Olsson
,
M.
,
Giannakopoulos
,
A. E.
,
Padture
,
N. P.
, and
Jitcharoen
,
J.
,
1999
, “
Engineering the Resistance to Sliding-Contact Damage Through Controlled Gradients in Elastic Properties at Contact Surfaces
,”
Acta Mater.
,
47
(
14
), pp.
3915
3926
.
19.
Zhao
,
S.
,
Zhao
,
Z.
,
Yang
,
Z.
,
Ke
,
L. L.
,
Kitipornchai
,
S.
, and
Yang
,
J.
,
2020
, “
Functionally Graded Graphene Reinforced Composite Structures: A Review
,”
Eng. Struct.
,
210
(
1
), p.
110339
.
20.
Marques
,
J.
,
Barbosa
,
A. Q.
,
da Silva
,
C. I.
,
Carbas
,
R. J. C.
, and
da Silva
,
L. F. M.
,
2021
, “
An Overview of Manufacturing Functionally Graded Adhesives–Challenges and Prospects
,”
J. Adhes.
,
97
(
2
), pp.
172
206
.
21.
Aghaei
,
A.
,
Bochud
,
N.
,
Rosi
,
G.
, and
Naili
,
S.
,
2021
, “
Wave Propagation Across a Functionally Graded Interphase Between Soft and Hard Solids: Insight From a Dynamic Surface Elasticity Model
,”
J. Mech. Phys. Solids
,
151
, p.
104380
.
22.
Delale
,
F.
, and
Erdogan
,
F.
,
1983
, “
The Crack Problem for a Nonhomogeneous Plane
,”
ASME J. Appl. Mech.
,
50
(
3
), pp.
609
614
.
23.
Erdogan
,
F.
,
1985
, “
The Crack Problem for Bonded Nonhomogeneous Materials Under Antiplane Shear Loading
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
823
828
.
24.
Delale
,
F.
, and
Erdogan
,
F.
,
1988
, “
On the Mechanical Modeling of the Interfacial Region in Bonded Half-Planes
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
317
324
.
25.
Erdogan
,
F.
,
Kaya
,
A. C.
, and
Joseph
,
P. F.
,
1991
, “
The Crack Problem in Bonded Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
410
418
.
26.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1993
, “
Antiplane Shear Crack Problem in Bonded Materials With a Graded Interfacial Zone
,”
Int. J. Eng. Sci.
,
31
(
12
), pp.
1641
1657
.
27.
Erdogan
,
F.
, and
Ozturk
,
M.
,
1995
, “
Periodic Cracking of Functionally Graded Coatings
,”
Int. J. Eng. Sci.
,
33
(
15
), pp.
2179
2195
.
28.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1995
, “
An Axisymmetric Crack in Bonded Materials With a Nonhomogeneous Interfacial Zone Under Torsion
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
116
125
.
29.
Chen
,
Y.
, and
Erdogan
,
F.
,
1996
, “
The Interface Crack Problem for a Nonhomogeneous Coating Bonded to a Homogeneous Substrate
,”
J. Mech. Phys. Solids
,
44
(
5
), pp.
771
787
.
30.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1996
, “
Axisymmetric Crack Problem in Bonded Materials With a Graded Interfacial Region
,”
Int. J. Solids Struct.
,
33
(
2
), pp.
193
219
.
31.
Erdogan
,
F.
, and
Wu
,
B.
,
1997
, “
The Surface Crack Problem for a Plate With Functionally Graded Properties
,”
ASME J. Appl. Mech.
,
64
(
3
), pp.
449
456
.
32.
Choi
,
H. J.
,
1996
, “
An Analysis of Cracking in a Layered Medium With a Functionally Graded Nonhomogeneous Interface
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
479
486
.
33.
Choi
,
H. J.
,
1996
, “
Bonded Dissimilar Strips With a Crack Perpendicular to the Functionally Graded Interface
,”
Int. J. Solids Struct.
,
33
(
28
), pp.
4101
4117
.
34.
Choi
,
H. J.
,
Lee
,
K. Y.
, and
Jin
,
T. E.
,
1998
, “
Collinear Cracks in a Layered Half-Plane With a Graded Nonhomogeneous Interfacial Zone–Part I: Mechanical Response
,”
Int. J. Fract.
,
94
(
2
), pp.
103
122
.
35.
Selvadurai
,
A. P. S.
,
2000
, “
The Penny-Shaped Crack at a Bonded Plane with Localized Elastic Non-Homogeneity
,”
Eur. J. Mech. A. Solids
,
19
(
3
), pp.
525
534
.
36.
Choi
,
H. J.
,
2001
, “
The Problem for Bonded Half-Planes Containing a Crack at an Arbitrary Angle to the Graded Interfacial Zone
,”
Int. J. Solids Struct.
,
38
(
36–37
), pp.
6559
6588
.
37.
Guo
,
L.-C.
,
Wu
,
L.
, and
Ma
,
L.
,
2004
, “
The Interface Crack Problem Under a Concentrated Load for a Functionally Graded Coating–Substrate Composite System
,”
Compos. Struct.
,
63
(
3–4
), pp.
397
406
.
38.
Huang
,
G.-Y.
,
Wang
,
Y.-S.
, and
Yu
,
S.-W.
,
2005
, “
Stress Concentration at a Penny-Shaped Crack in a Nonhomogeneous Medium Under Torsion
,”
Acta Mech.
,
180
(
1
), pp.
107
115
.
39.
Fotuhi
,
A.
, and
Fariborz
,
S.
,
2006
, “
Anti-Plane Analysis of a Functionally Graded Strip With Multiple Cracks
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1239
1252
.
40.
Yong
,
H.
, and
Zhou
,
Y.-H.
,
2006
, “
Analysis of a Mode III Crack Problem in a Functionally Graded Coating-Substrate System With Finite Thickness
,”
Int. J. Fract.
,
141
(
3–4
), pp.
459
467
.
41.
Guo
,
L.-C.
, and
Noda
,
N.
,
2008
, “
Fracture Mechanics Analysis of Functionally Graded Layered Structures With a Crack Crossing the Interface
,”
Mech. Mater.
,
40
(
3
), pp.
81
99
.
42.
Choi
,
H. J.
, and
Paulino
,
G. H.
,
2010
, “
Interfacial Cracking in a Graded Coating/Substrate System Loaded by a Frictional Sliding Flat Punch
,”
Proc. R. Soc. A
,
466
(
2115
), pp.
853
880
.
43.
Choi
,
H. J.
,
2012
, “
Interaction of Two Offset Interfacial Cracks in Bonded Dissimilar Media With a Functionally Graded Interlayer: Antiplane Deformation
,”
Mech. Res. Commun.
,
45
, pp.
7
14
.
44.
Choi
,
H. J.
,
2013
, “
Mixed-Mode Interaction of Two Offset Interfacial Cracks in Bonded Dissimilar Half-Planes With a Functionally Graded Interlayer
,”
Mech. Mater.
,
64
, pp.
44
55
.
45.
Choi
,
H. J.
,
2016
, “
Interfacial Fracture Analysis of Bonded Dissimilar Strips With a Functionally Graded Interlayer Under Antiplane Deformation
,”
Mech. Res. Commun.
,
78
, pp.
93
99
.
46.
Choi
,
H. J.
,
2016
, “
Analysis of Stress Intensity Factors for Edge Interfacial Cracks in Bonded Dissimilar Media With a Functionally Graded Interlayer Under Antiplane Deformation
,”
Theor. Appl. Fract. Mec.
,
82
, pp.
88
95
.
47.
Guo
,
L.
,
Huang
,
S.
,
Zhang
,
L.
, and
Jia
,
P.
,
2018
, “
The Interface Crack Problem for a Functionally Graded Coating-Substrate Structure With General Coating Properties
,”
Int. J. Solids Struct.
,
146
(
1
), pp.
136
153
.
48.
Selvadurai
,
A. P. S.
,
1996
, “
The Settlement of a Rigid Circular Foundation Resting on a Half-Space Exhibiting a Near Surface Elastic Non-Homogeneity
,”
Int. J. Numer. Anal. Methods Geomech.
,
20
(
5
), pp.
351
364
.
49.
Selvadurai
,
A. P. S.
,
2007
, “
The Analytical Method in Geomechanics
,”
ASME Appl. Mech. Rev.
,
60
(
3
), pp.
87
106
.
50.
Katebi
,
A.
, and
Selvadurai
,
A.
,
2013
, “
Undrained Behaviour of a Non-Homogeneous Elastic Medium: The Influence of Variations in the Elastic Shear Modulus With Depth
,”
Géotechnique
,
63
(
13
), pp.
1159
1169
.
51.
Selvadurai
,
A. P. S.
, and
Katebi
,
A.
,
2015
, “
An Adhesive Contact Problem for an Incompressible Non-Homogeneous Elastic Halfspace
,”
Acta Mech.
,
226
(
2
), pp.
249
265
.
52.
Selvadurai
,
A. P. S.
, and
Katebi
,
A.
,
2016
, “
The Boussinesq–Mindlin Problem for a Non-Homogeneous Elastic Halfspace
,”
Z. Angew. Math. Phys.
,
67
(
3
), pp.
1
15
.
53.
Selvadurai
,
A. P. S.
, and
Lan
,
Q.
,
1998
, “
Axisymmetric Mixed Boundary Value Problems for an Elastic Halfspace With a Periodic Nonhomogeneity
,”
Int. J. Solids Struct.
,
35
(
15
), pp.
1813
1826
.
54.
Li
,
X.
,
Chen
,
W.
,
Wang
,
H.
, and
Wang
,
G.
,
2012
, “
Crack Tip Plasticity of a Penny-Shaped Dugdale Crack in a Power-Law Graded Elastic Infinite Medium
,”
Eng. Fract. Mech.
,
88
, pp.
1
14
.
55.
Ma
,
L.
,
Wu
,
L.-Z.
, and
Guo
,
L.-C.
,
2002
, “
Dynamic Behavior of Two Collinear Anti-Plane Shear Cracks in a Functionally Graded Layer Bonded to Dissimilar Half Planes
,”
Mech. Res. Commun.
,
29
(
4
), pp.
207
215
.
56.
Ma
,
L.
,
Wu
,
L.-Z.
, and
Zhou
,
Z.-G.
,
2004
, “
Dynamic Stress Intensity Factors Around Two Parallel Cracks in a Functionally Graded Layer Bonded to Dissimilar Half-Planes Subjected to Anti-Plane Incident Harmonic Stress Waves
,”
Int. J. Eng. Sci.
,
42
(
2
), pp.
187
202
.
57.
Li
,
Y.-D.
,
Lee
,
K. Y.
, and
Dai
,
Y.
,
2008
, “
Dynamic Stress Intensity Factors of Two Collinear Mode-III Cracks Perpendicular to and on the two Sides of a Bi-FGM Weak-Discontinuous Interface
,”
Eur. J. Mech. A. Solids
,
27
(
5
), pp.
808
823
.
58.
Choi
,
H. J.
,
2014
, “
Thermoelastic Interaction of Two Offset Interfacial Cracks in Bonded Dissimilar Half-Planes With a Functionally Graded Interlayer
,”
Acta Mec.
,
225
(
7
), pp.
2111
2131
.
59.
Choi
,
H. J.
,
2014
, “
Elastodynamic Interaction of Two Offset Interfacial Cracks in Bonded Dissimilar Media With a Functionally Graded Interlayer Under Antiplane Shear Impact
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081008
.
60.
Haghiri
,
H.
,
Fotuhi
,
A. R.
, and
Shafiei
,
A. R.
,
2015
, “
Elastodynamic Analysis of Mode III Multiple Cracks in a Functionally Graded Orthotropic Half-Plane
,”
Theor. Appl. Fract. Mec.
,
80
(
Part B
), pp.
155
169
.
61.
Guo
,
L.
,
Wang
,
Z.
, and
Noda
,
N.
,
2012
, “
A Fracture Mechanics Model for a Crack Problem of Functionally Graded Materials With Stochastic Mechanical Properties
,”
Proc. R. Soc. A
,
468
(
2146
), pp.
2939
2961
.
62.
Pan
,
H.
, and
Song
,
T.
,
2017
, “
Stochastic Investigation of the Facture Problem in Functionally Graded Materials With Uncertain Mechanical Properties and an Arbitrarily Oriented Crack
,”
Theor. Appl. Fract. Mec.
,
91
, pp.
155
165
.
63.
Wang
,
B.
,
Mai
,
Y.-W.
, and
Noda
,
N.
,
2002
, “
Fracture Mechanics Analysis Model for Functionally Graded Materials With Arbitrarily Distributed Properties
,”
Int. J. Fract.
,
116
(
2
), pp.
161
177
.
64.
Wang
,
B.
,
Han
,
J.
, and
Du
,
S.
,
1999
, “
Functionally Graded Penny-Shaped Cracks Under Dynamic Loading
,”
Theor. Appl. Fract. Mec.
,
32
(
3
), pp.
165
175
.
65.
Wang
,
B.
,
Han
,
J.
, and
Du
,
S.
,
2000
, “
Fracture Mechanics for Multilayers With Penny-Shaped Cracks Subjected to Dynamic Torsional Loading
,”
Int. J. Eng. Sci.
,
38
(
8
), pp.
893
901
.
66.
Wang
,
B.
,
Han
,
J.
, and
Du
,
S.
,
2000
, “
Cracks Problem for Non-Homogeneous Composite Material Subjected to Dynamic Loading
,”
Int. J. Solids Struct.
,
37
(
9
), pp.
1251
1274
.
67.
Wang
,
B.
,
Han
,
J.
, and
Du
,
S.
,
2000
, “
Electroelastic Fracture Dynamics for Multilayered Piezoelectric Materials Under Dynamic Anti-Plane Shearing
,”
Int. J. Solids Struct.
,
37
(
38
), pp.
5219
5231
.
68.
Huang
,
G.-Y.
,
Wang
,
Y.-S.
, and
Gross
,
D.
,
2002
, “
Fracture Analysis of Functionally Graded Coatings: Antiplane Deformation
,”
Eur. J. Mech. A. Solids
,
21
(
3
), pp.
391
400
.
69.
Wang
,
Y.-S.
,
Huang
,
G.-Y.
, and
Dross
,
D.
,
2003
, “
On the Mechanical Modeling of Functionally Graded Interfacial Zone With a Griffith Crack: Anti-Plane Deformation
,”
ASME J. Appl. Mech.
,
70
(
5
), pp.
676
680
.
70.
Huang
,
G.-Y.
,
Wang
,
Y.-S.
, and
Yu
,
S.-W.
,
2004
, “
Fracture Analysis of a Functionally Graded Interfacial Zone Under Plane Deformation
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
731
743
.
71.
Guo
,
L.-C.
, and
Noda
,
N.
,
2007
, “
Modeling Method for a Crack Problem of Functionally Graded Materials With Arbitrary Properties—Piecewise-Exponential Model
,”
Int. J. Solids Struct.
,
44
(
21
), pp.
6768
6790
.
72.
Paulino
,
G. H.
, and
Kim
,
J.-H.
,
2004
, “
On the Poisson's Ratio Effect on Mixed-Mode Stress Intensity Factors and T-Stress in Functionally Graded Materials
,”
Int. J. Comput. Eng. Sci.
,
5
(
04
), pp.
833
861
.
73.
Ghajar
,
R.
, and
Moghaddam
,
A. S.
,
2011
, “
Numerical Investigation of the Mode III Stress Intensity Factors in FGMs Considering the Effect of Graded Poisson’s Ratio
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1478
1486
.
74.
Chen
,
X. W.
, and
Yue
,
Z. Q.
,
2021
, “
A Unified Mathematical Treatment of Interfacial Edge Dislocations in Three-Dimensional Functionally Graded Materials
,”
J. Mech. Phys. Solids
,
156
, p.
104471
.
75.
Yue
,
Z. Q.
,
1995
, “
On Generalized Kelvin Solutions in a Multilayered Elastic Medium
,”
J. Elast.
,
40
(
1
), pp.
1
43
.
76.
Yue
,
Z. Q.
,
2015
, “
Yue’s Solution of Classical Elasticity in n-Layered Solids: Part 1, Mathematical Formulation
,”
Front. Struct. Civil Eng.
,
9
(
3
), pp.
215
249
.
77.
Yue
,
Z. Q.
,
2015
, “
Yue’s Solution of Classical Elasticity in n-Layered Solids: Part 2, Mathematical Verification
,”
Front. Struct. Civil Eng.
,
9
(
3
), pp.
250
285
.
78.
Merkel
,
R.
,
Kirchgeßner
,
N.
,
Cesa
,
C. M.
, and
Hoffmann
,
B.
,
2007
, “
Cell Force Microscopy on Elastic Layers of Finite Thickness
,”
Biophys. J.
,
93
(
9
), pp.
3314
3323
.
79.
Maloney
,
J. M.
,
Walton
,
E. B.
,
Bruce
,
C. M.
, and
Van Vliet
,
K. J.
,
2008
, “
Influence of Finite Thickness and Stiffness on Cellular Adhesion-Induced Deformation of Compliant Substrata
,”
Phys. Rev. E
,
78
(
4
), p.
041923
.
80.
Chen
,
X. W.
,
Yue
,
Z. Q.
, and
Wang
,
S.
,
2022
, “
Complete Solution for the Axisymmetric Problem of a Penny-Shaped Crack Near and Parallel to an Arbitrarily Graded Interface in FGMs
,”
Int. J. Solids Struct.
,
254
(
1
), p.
111849
.
81.
Pan
,
E.
,
2019
, “
Green’s Functions for Geophysics: A Review
,”
Rep. Prog. Phys.
,
82
(
10
), p.
106801
.
82.
Xiao
,
H.
, and
Yue
,
Z.
,
2011
, “
A Three-Dimensional Displacement Discontinuity Method for Crack Problems in Layered Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
48
(
3
), pp.
412
420
.
83.
Xiao
,
H.
,
Yue
,
Z. Q.
,
Tham
,
L. G.
, and
Chen
,
Y. R.
,
2005
, “
Stress Intensity Factors for Penny-Shaped Cracks Perpendicular to Graded Interfacial Zone of Bonded Bi-Materials
,”
Eng. Fract. Mech.
,
72
(
1
), pp.
121
143
.
84.
Xiao
,
S.
,
Yue
,
Z. Q.
, and
Xiao
,
H.
,
2019
, “
Dual Boundary Element Method for Analyzing Three-Dimensional Cracks in Layered and Graded Halfspaces
,”
Eng. Anal. Boundary Elem.
,
104
, pp.
135
147
.
85.
Yue
,
Z.
,
Xiao
,
H.
, and
Pan
,
E.
,
2007
, “
Stress Intensity Factors of Square Crack Inclined to Interface of Transversely Isotropic Bi-Material
,”
Eng. Anal. Boundary Elem.
,
31
(
1
), pp.
50
65
.
86.
Yue
,
Z.
,
Xiao
,
H.
, and
Tham
,
L.
,
2003
, “
Boundary Element Analysis of Crack Problems in Functionally Graded Materials
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3273
3291
.
87.
Yue
,
Z. Q.
, and
Xiao
,
H. T.
,
2002
, “
Generalized Kelvin Solution Based Boundary Element Method for Crack Problems in Multilayered Solids
,”
Eng. Anal. Boundary Elem.
,
26
(
8
), pp.
691
705
.
88.
Chen
,
X. W.
, and
Yue
,
Z. Q.
,
2019
, “
Contact Mechanics of Two Elastic Spheres Reinforced by Functionally Graded Materials (FGM) Thin Coatings
,”
Eng. Anal. Boundary Elem.
,
109
, pp.
57
69
.
89.
Chen
,
X. W.
, and
Yue
,
Z. Q.
,
2020
, “
Mode-I Pressurized Axisymmetric Penny-Shaped Crack in Graded Interfacial Zone With Variable Modulus and Poisson’s Ratio
,”
Eng. Fract. Mech.
,
235
, p.
107164
.
90.
Chen
,
X. W.
, and
Yue
,
Z. Q.
,
2020
, “
Incomplete Contact Between a Coated Elastic Substrate and Rigid Foundation Perturbed by a Rigid Disc
,”
Int. J. Solids Struct.
,
202
(
1
), pp.
605
619
.
91.
Chen
,
X. W.
, and
Yue
,
Z. Q.
,
2020
, “
Nonlinear Contact Force Law for Spherical Indentation of FGM Coated Elastic Substrate: An Extension of Hertz's Solution
,”
Int. J. Solids Struct.
,
191
(
15
), pp.
550
565
.
92.
Kachanov
,
M.
,
1987
, “
Elastic Solids with Many Cracks: A Simple Method of Analysis
,”
Int. J. Solids Struct.
,
23
(
1
), pp.
23
43
.
93.
Kachanov
,
M.
,
1993
, “
Elastic Solids With Many Cracks and Related Problems
,”
Adv. Appl. Mech.
,
30
, pp.
259
445
.
94.
Li
,
Y.
,
Tham
,
L. G.
,
Wang
,
Y. H.
, and
Tsui
,
Y.
,
2003
, “
A Modified Kachanov Method for Analysis of Solids With Multiple Cracks
,”
Eng. Fract. Mech.
,
70
(
9
), pp.
1115
1129
.
95.
Kachanov
,
M.
, and
Argatov
,
I.
,
2022
, “
A Method of Analysis of Interacting Punches Pressed Onto Elastic Half-Space
,”
Int. J. Solids Struct.
,
253
(
15
), p.
111445
.
96.
Hills
,
D. A.
,
Kelly
,
P. A.
,
Dai
,
D. N.
, and
Korsunsky
,
A. M.
,
2013
,
Solution of Crack Problems: The Distributed Dislocation Technique
, Vol.
44
,
Springer Science & Business Media
.
97.
Yue
,
Z. Q.
,
1996
, “
On Elastostatics of Multilayered Solids Subjected to General Surface Traction
,”
Q. J. Mech. Appl. Math.
,
49
(
3
), pp.
471
499
.
98.
Bueckner
,
H. F.
,
1958
, “
The Propagation of Cracks and the Energy of Elastic Deformation
,”
Trans. ASME
,
80
(
6
), pp.
1225
1230
.
99.
Kachanov
,
M.
, and
Laures
,
J.-P.
,
1989
, “
Three-Dimensional Problems of Strongly Interacting Arbitrarily Located Penny-Shaped Cracks
,”
Int. J. Fract.
,
41
(
4
), pp.
289
313
.
100.
Sneddon
,
I. N.
,
1946
, “
The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid
,”
Proc. R. Soc. London, A
,
187
(
1009
), pp.
229
260
.
101.
Rousseau
,
C.-E.
, and
Tippur
,
H.
,
2000
, “
Compositionally Graded Materials With Cracks Normal to the Elastic Gradient
,”
Acta Mater.
,
48
(
16
), pp.
4021
4033
.
102.
Hirshikesh
,
Natarajan
,
S.
,
Annabattula
,
R. K.
, and
Martínez-Pañeda
,
E.
,
2019
, “
Phase Field Modelling of Crack Propagation in Functionally Graded Materials
,”
Composites, Part B
,
169
(
15
), pp.
239
248
.
103.
Xiao
,
S.
, and
Yue
,
Z. Q.
,
2023
, “
Matrix Green's Function Solution of Closed-Form Singularity for Functionally Graded and Transversely Isotropic Materials Under Circular Ring Force Vector
,”
Eng. Anal. Boundary Elem.
,
146
, pp.
569
597
.
104.
Atkinson
,
K.
, and
Han
,
W.
,
2009
, “Numerical Solution of Fredholm Integral Equations of the Second Kind,”
Theoretical Numerical Analysis
,
Springer
,
New York
, pp.
473
549
.
105.
Selvadurai
,
A. P. S.
,
2002
, “
Mechanics of a Rigid Circular Disc Bonded to a Cracked Elastic Half-Space
,”
Int. J. Solids Struct.
,
39
(
24
), pp.
6035
6053
.
106.
Selvadurai
,
A. P. S.
, and
Samea
,
P.
,
2020
, “
On the Indentation of a Poroelastic Halfspace
,”
Int. J. Eng. Sci.
,
149
, p.
103246
.
107.
Selvadurai
,
A. P. S.
, and
Samea
,
P.
,
2021
, “
Mechanics of a Pressurized Penny-Shaped Crack in a Poroelastic Halfspace
,”
Int. J. Eng. Sci.
,
163
, p.
103472
.
You do not currently have access to this content.