Abstract

Elastic surfaces that morph between multiple geometrical configurations are of significant engineering value, with applications ranging from the deployment of space-based photovoltaic arrays, the erection of temporary shelters, and the realization of flexible display systems, to understanding the encapsulation and release of viral RNAs. In general, ensuring that a shape with a planar rest configuration can deploy into a target three-dimensional (3D) shape is a nontrivial problem. Moreover, it is difficult to physically realize the local deformations necessary to achieve such global transformation. Here, we give a tutorial on applying conformal mapping to rationalize the geometrical deformation of several microstructure designs. A conformal map is a function that locally preserves angles and shapes but not lengths: some regions are scaled (enlarged or shrunk) more than others. To transform a planar surface to 3D, we implement uniform local scalings as mechanical deformations. Numerous natural and architected material systems exhibit such behavior, including kirigami, origami, hydrogel, linkage mechanisms, and fabric membranes. The design and fabrication of conformally transformable surfaces is a transdisciplinary challenge involving insights from advanced manufacturing, computational design, material science, and mechanics. By recognizing that many material systems exhibit isotropic deformation, we hope to inspire researchers to adopt conformal mapping in designing next-generation surface-based engineering systems.

References

1.
Tomita
,
H.
,
Higaki
,
T.
,
Kobayashi
,
T.
,
Fujii
,
T.
, and
Fujimoto
,
K.
,
2015
, “
Stenting for Curved Lesions Using a Novel Curved Balloon: Preliminary Experimental Study
,”
J. Cardiol.
,
66
(
2
), pp.
120
124
.
2.
Hendrikson
,
W. J.
,
Rouwkema
,
J.
,
Clementi
,
F.
,
Van Blitterswijk
,
C. A.
,
Farè
,
S.
, and
Moroni
,
L.
,
2017
, “
Towards 4d Printed Scaffolds for Tissue Engineering: Exploiting 3d Shape Memory Polymers to Deliver Time-Controlled Stimulus on Cultured Cells
,”
Biofabrication
,
9
(
3
), p.
031001
.
3.
Molinari
,
G.
,
Quack
,
M.
,
Dmitriev
,
V.
,
Morari
,
M.
,
Jenny
,
P.
, and
Ermanni
,
P.
,
2011
, “
Aerostructural Optimization of Morphing Airfoils for Adaptive Wings
,”
J. Intell. Mater. Syst. Struct.
,
22
(
10
), pp.
1075
1089
.
4.
Tang
,
Y.
,
Lin
,
G.
,
Yang
,
S.
,
Yi
,
Y. K.
,
Kamien
,
R. D.
, and
Yin
,
J.
,
2017
, “
Programmable Kirikirigami Metamaterials
,”
Adv. Mater.
,
29
(
10
), p.
1604262
.
5.
Hu
,
J.
,
Meng
,
H.
,
Li
,
G.
, and
Ibekwe
,
S. I.
,
2012
, “
A Review of Stimuli-Responsive Polymers for Smart Textile Applications
,”
Smart Mater. Struct.
,
21
(
5
), p.
053001
.
6.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Selffolding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
7.
Adams
,
J. J.
,
Duoss
,
E. B.
,
Malkowski
,
T. F.
,
Motala
,
M. J.
,
Ahn
,
B. Y.
,
Nuzzo
,
R. G.
,
Bernhard
,
J. T.
, and
Lewis
,
J. A.
,
2011
, “
Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces
,”
Adv. Mater.
,
23
(
11
), pp.
1335
1340
.
8.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1–2
), pp.
12
26
.
9.
Bai
,
Y.
,
Wang
,
H.
,
Xue
,
Y.
,
Pan
,
Y.
,
Kim
,
J.-T.
,
Ni
,
X.
,
Liu
,
T.-L.
,
Yang
,
Y.
,
Han
,
M.
, and
Huang
,
Y.
,
2022
, “
A Dynamically Reprogrammable Surface With Self-evolving Shape Morphing
,”
Nature
,
609
(
7928
), pp.
701
708
.
10.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
11.
Sim
,
K.
,
Chen
,
S.
,
Li
,
Z.
,
Rao
,
Z.
,
Liu
,
J.
,
Lu
,
Y.
,
Jang
,
S.
,
Ershad
,
F.
,
Chen
,
J.
,
Xiao
,
J.
, et al
,
2019
, “
Three-Dimensional Curvy Electronics Created Using Conformal Additive Stamp Printing
,”
Nat. Electron.
,
2
(
10
), pp.
471
479
.
12.
Bai
,
Y.
,
Wang
,
H.
,
Xue
,
Y.
,
Pan
,
Y.
,
Kim
,
J. T.
,
Ni
,
X.
,
Liu
,
T. L.
, et al
,
2021
, “
A Dynamically Reprogrammable Metasurface With Self-evolving Shape Morphing
,”
arXiv preprint
. https://arxiv.org/abs/2112.04631
13.
Zhang
,
Y.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3d Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), pp.
1
17
.
14.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
15.
Momeni
,
F.
,
Liu
,
X.
,
Ni
,
J.
, et al
,
2017
, “
A Review of 4d Printing
,”
Mater. Des.
,
122
, pp.
42
79
.
16.
Kuang
,
X.
,
Roach
,
D. J.
,
Wu
,
J.
,
Hamel
,
C. M.
,
Ding
,
Z.
,
Wang
,
T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2019
, “
Advances in 4d Printing: Materials and Applications
,”
Adv. Funct. Mater.
,
29
(
2
), p.
1805290
.
17.
Kotikian
,
A.
,
Truby
,
R. L.
,
Boley
,
J. W.
,
White
,
T. J.
, and
Lewis
,
J. A.
,
2018
, “
3d Printing of Liquid Crystal Elastomeric Actuators With Spatially Programed Nematic Order
,”
Adv. Mater.
,
30
(
10
), p.
1706164
.
18.
Ge
,
Q.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2013
, “
Active Materials by Four-Dimension Printing
,”
Appl. Phys. Lett.
,
103
(
13
), p.
131901
.
19.
Chen
,
T.
, and
Shea
,
K.
,
2018
, “
An Autonomous Programmable Actuator and Shape Reconfigurable Structures Using Bistability and Shape Memory Polymers
,”
3D Print. Addit. Manuf.
,
5
(
2
), pp.
91
101
.
20.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
21.
Raviv
,
D.
,
Zhao
,
W.
,
McKnelly
,
C.
,
Papadopoulou
,
A.
,
Kadambi
,
A.
,
Shi
,
B.
,
Hirsch
,
S.
,
Dikovsky
,
D.
,
Zyracki
,
M.
,
Olguin
,
C.
, et al
,
2014
, “
Active Printed Materials for Complex Self-evolving Deformations
,”
Sci. Rep.
,
4
(
1
), pp.
1
8
.
22.
Celli
,
P.
,
McMahan
,
C.
,
Ramirez
,
B.
,
Bauhofer
,
A.
,
Naify
,
C.
,
Hofmann
,
D.
,
Audoly
,
B.
, and
Daraio
,
C.
,
2018
, “
Shape-Morphing Architected Sheets With Non-periodic Cut Patterns
,”
Soft Matter
,
14
(
48
), pp.
9744
9749
.
23.
Konaković-Luković
,
M.
,
Panetta
,
J.
,
Crane
,
K.
, and
Pauly
,
M.
,
2018
, “
Rapid Deployment of Curved Surfaces via Programmable Auxetics
,”
ACM Trans. Graph. (TOG)
,
37
(
4
), pp.
1
13
.
24.
Panetta
,
J.
,
Konaković-Luković
,
M.
,
Isvoranu
,
F.
,
Bouleau
,
E.
, and
Pauly
,
M.
,
2019
, “
Xshells: A New Class of Deployable Beam Structures
,”
ACM Trans. Graph. (TOG)
,
38
(
4
), pp.
1
15
.
25.
Chen
,
T.
, and
Shea
,
K.
,
2021
, “
Computational Design of Multi-stable, Reconfigurable Surfaces
,”
Mater. Des.
,
205
, p.
109688
.
26.
Chen
,
T.
,
Panetta
,
J.
,
Schnaubelt
,
M.
, and
Pauly
,
M.
,
2021
, “
Bistable Auxetic Surface Structures
,”
ACM Trans. Graph. (TOG)
,
40
(
4
), pp.
1
9
.
27.
Panetta
,
J.
,
Isvoranu
,
F.
,
Chen
,
T.
,
Siefert
,
E.
,
Roman
,
B.
, and
Pauly
,
M.
,
2021
, “
Computational Inverse Design of Surface-Based Inflatables
,”
ACM Trans. Graph. (TOG)
,
40
(
4
), pp.
1
14
.
28.
Pikul
,
J.
,
Li
,
S.
,
Bai
,
H.
,
Hanlon
,
R.
,
Cohen
,
I.
, and
Shepherd
,
R. F.
,
2017
, “
Stretchable Surfaces With Programmable 3d Texture Morphing for Synthetic Camouflaging Skins
,”
Science
,
358
(
6360
), pp.
210
214
.
29.
Holback
,
H.
,
Yeo
,
Y.
, and
Park
,
K.
,
2011
, “Hydrogel Swelling Behavior and Its Biomedical Applications,”
Biomedical Hydrogels
,
S.
Rimmer
, ed.,
Elsevier
,
New York
, pp.
3
24
.
30.
Hinton
,
E. M.
,
Hogg
,
A. J.
, and
Huppert
,
H. E.
,
2020
, “
Shallow Free-Surface Stokes Flow Around a Corner
,”
Philos. Trans. R. Soc. A
,
378
(
2174
), p.
20190515
.
31.
Kolaei
,
A.
,
Rakheja
,
S.
, and
Richard
,
M. J.
,
2014
, “
Range of Applicability of the Linear Fluid Slosh Theory for Predicting Transient Lateral Slosh and Roll Stability of Tank Vehicles
,”
J. Sound Vib.
,
333
(
1
), pp.
263
282
.
32.
Thomson
,
W.
,
1847
, “
Extraits de Deux Lettres Adressees a M. Liouville
,”
J. Math. Pures Appl.
,
12
, pp.
256
264
.
33.
Bateman
,
H.
,
1909
, “
The Conformal Transformations of a Space of Four Dimensions and Their Applications to Geometrical Optics
,”
Proc. London Math. Soc.
,
2
(
1
), pp.
70
89
.
34.
Francesco
,
P.
,
Mathieu
,
P.
, and
Sénéchal
,
D.
,
2012
,
Conformal Field Theory
,
Springer Science & Business Media
,
New York
.
35.
Lévy
,
B.
,
Petitjean
,
S.
,
Ray
,
N.
, and
Maillot
,
J.
,
2002
, “
Least Squares Conformal Maps for Automatic Texture Atlas Generation
,”
ACM Trans. Graph.
,
21
(
3
), pp.
362
371
.
36.
Crane
,
K.
,
Pinkall
,
U.
, and
Schröder
,
P.
,
2011
, “
Spin Transformations of Discrete Surfaces
,”
ACM Trans. Graph.
,
30
(
4
), pp.
1
10
.
37.
Campen
,
M.
, and
Zorin
,
D.
,
2017
, “
On Discrete Conformal Seamless Similarity Maps
,”
arXiv preprint
. https://arxiv.org/abs/1705.02422
38.
Sharp
,
N.
, and
Crane
,
K.
,
2018
, “
Variational Surface Cutting
,”
ACM Trans. Graph. (TOG)
,
37
(
4
), pp.
1
13
.
39.
Maron
,
H.
,
Galun
,
M.
,
Aigerman
,
N.
,
Trope
,
M.
,
Dym
,
N.
,
Yumer
,
E.
,
Kim
,
V. G.
, and
Lipman
,
Y.
,
2017
, “
Convolutional Neural Networks on Surfaces via Seamless Toric Covers
,”
ACM Trans. Graph.
,
36
(
4
), pp.
71
71
.
40.
Hass
,
J.
, and
Koehl
,
P.
,
2015
, “
A Metric for Genus-Zero Surfaces
,”
arXiv preprint
. https://arxiv.org/abs/1507.00798
41.
Czajkowski
,
M.
,
Coulais
,
C.
,
van Hecke
,
M.
, and
Rocklin
,
D.
,
2022
, “
Conformal Elasticity of Mechanism-Based Metamaterials
,”
Nat. Commun.
,
13
(
1
), pp.
1
9
.
42.
Gu
,
X. D.
, and
Yau
,
S.-T.
,
2008
,
Computational Conformal Geometry
, Vol.
1
,
International Press
,
Somerville, MA
.
43.
Ben-Chen
,
M.
,
Gotsman
,
C.
, and
Bunin
,
G.
,
2008
, “Conformal Flattening by Curvature Prescription and Metric Scaling,”
Computer Graphics Forum
, Vol.
27
,
Wiley Online Library
,
Oxford, UK
, pp.
449
458
.
44.
Aubin
,
T.
,
1998
,
Some Nonlinear Problems in Riemannian Geometry
,
Springer Science & Business Media
,
Berlin, Germany
.
45.
Crane
,
K.
,
2020
,
An Excursion Through Discrete Differential Geometry
, Vol.
76
,
American Mathematical Society
,
Providence
.
46.
Desbrun
,
M.
,
Meyer
,
M.
, and
Alliez
,
P.
,
2002
, “Intrinsic Parameterizations of Surface Meshes,”
Computer Graphics Forum
, Vol.
21
,
Wiley Online Library
,
Oxford, UK
, pp.
209
218
.
47.
Zayer
,
R.
,
Lévy
,
B.
, and
Seidel
,
H.-P.
,
2007
, “
Linear Angle Based Parameterization
,”
Fifth Eurographics Symposium on Geometry Processing SGP 2007
,
Eurographics Association
, pp.
135
141
.
48.
Mullen
,
P.
,
Tong
,
Y.
,
Alliez
,
P.
, and
Desbrun
,
M.
,
2008
, “Spectral Conformal Parameterization,”
Computer Graphics Forum
, Vol.
27
,
Wiley Online Library
,
Oxford, UK
, pp.
1487
1494
.
49.
Gillespie
,
M.
,
Springborn
,
B.
, and
Crane
,
K.
,
2021
, “
Discrete Conformal Equivalence of Polyhedral Surfaces
,”
ACM Trans. Graph.
,
40
(
4
), pp.
1
20
.
50.
Sawhney
,
R.
, and
Crane
,
K.
,
2017
, “
Boundary First Flattening
,”
ACM Trans. Graph.
,
37
(
1
), pp.
5:1
5:14
.
51.
Abikoff
,
W.
,
1981
, “
The Uniformization Theorem
,”
Am. Math. Mon.
,
88
(
8
), pp.
574
592
.
52.
Soliman
,
Y.
,
Slepčev
,
D.
, and
Crane
,
K.
,
2018
, “
Optimal Cone Singularities for Conformal Flattening
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
17
.
53.
Konaković
,
M.
,
Crane
,
K.
,
Deng
,
B.
,
Bouaziz
,
S.
,
Piker
,
D.
, and
Pauly
,
M.
,
2016
, “
Beyond Developable: Computational Design and Fabrication With Auxetic Materials
,”
ACM Trans. Graph. (TOG)
,
35
(
4
), pp.
1
11
.
54.
Ren
,
Y.
,
Kusupati
,
U.
,
Panetta
,
J.
,
Isvoranu
,
F.
,
Pellis
,
D.
,
Chen
,
T.
, and
Pauly
,
M.
,
2022
, “
Umbrella Meshes: Elastic Mechanisms for Freeform Shape Deployment
,”
ACM Trans. Graph. (TOG)
,
41
(
4
), pp.
1
15
.
55.
Chang
,
C.
,
Duan
,
B.
,
Cai
,
J.
, and
Zhang
,
L.
,
2010
, “
Superabsorbent Hydrogels Based on Cellulose for Smart Swelling and Controllable Delivery
,”
Eur. Polym. J.
,
46
(
1
), pp.
92
100
.
56.
Bahram
,
M.
,
Mohseni
,
N.
, and
Moghtader
,
M.
,
2016
,
Emerging Concepts in Analysis and Applications of Hydrogels
,
IntechOpen
,
London, UK
.
57.
Chen
,
J.
,
Huang
,
J.
,
Zhang
,
H.
, and
Hu
,
Y.
,
2020
, “
A Photoresponsive Hydrogel with Enhanced Photoefficiency and the Decoupled Process of Light Activation and Shape Changing for Precise Geometric Control
,”
ACS Appl. Mater. Interfaces
,
12
(
34
), pp.
38647
38654
.
58.
Yu
,
Y.
,
Chen
,
Y.
, and
Paulino
,
G.
,
2022
, “
Programming Curvatures by Unfolding of the Triangular Resch Pattern
,”
Int. J. Mech. Sci.
,
238
, p.
107861
.
59.
Grima
,
J. N.
, and
Evans
,
K. E.
,
2000
, “
Auxetic Behavior From Rotating Squares
,”
J. Mater. Sci. Lett.
,
19
(
17
), pp.
1563
1565
.
60.
McMahan
,
C.
,
Akerson
,
A.
,
Celli
,
P.
,
Audoly
,
B.
, and
Daraio
,
C.
,
2022
, “
Effective Continuum Models for the Buckling of Non-periodic Architected Sheets That Display Quasi-mechanism Behaviors
,”
J. Mech. Phys. Solids
,
166
, p.
104934
.
61.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extreme Mech. Lett.
,
9
, pp.
291
296
.
62.
Guseinov
,
R.
,
McMahan
,
C.
,
Pérez
,
J.
,
Daraio
,
C.
, and
Bickel
,
B.
,
2020
, “
Programming Temporal Morphing of Self-actuated Shells
,”
Nat. Commun.
,
11
(
1
), pp.
1
7
.
63.
Sifakis
,
E.
, and
Barbic
,
J.
,
2012
, “
Fem Simulation of 3D Deformable Solids: A Practitioner’s Guide to Theory, Discretization and Model Reduction
,”
ACM SIGGRAPH 2012 Courses, SIGGRAPH ‘12
,
New York
.
64.
Bouaziz
,
S.
,
Martin
,
S.
,
Liu
,
T.
,
Kavan
,
L.
, and
Pauly
,
M.
,
2014
, “
Projective Dynamics: Fusing Constraint Projections for Fast Simulation
,”
ACM Trans. Graph.
,
33
(
4
), pp.
1
11
.
65.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph. (SIGGRAPH)
,
27
(
3
), pp.
63:1
63:12
.
66.
Grinspun
,
E.
,
Gingold
,
Y.
,
Reisman
,
J.
, and
Zorin
,
D.
,
2006
, “Computing Discrete Shape Operators on General Meshes,”
Computer Graphics Forum
, Vol.
25
,
Wiley Online Library
,
Oxford, UK
, pp.
547
556
.
67.
Pérez
,
J.
,
Otaduy
,
M. A.
, and
Thomaszewski
,
B.
,
2017
, “
Computational Design and Automated Fabrication of Kirchhoff-Plateau Surfaces
,”
ACM Trans. Graph. (TOG)
,
36
(
4
), pp.
1
12
.
68.
Lodder
,
J.
,
2003
, “
Curvature in the Calculus Curriculum
,”
Am. Math. Mon.
,
110
(
7
), pp.
593
605
.
69.
Guseinov
,
R.
,
Miguel
,
E.
, and
Bickel
,
B.
,
2017
, “
Curveups: Shaping Objects From Flat Plates With Tension-Actuated Curvature
,”
ACM Trans. Graph. (TOG)
,
36
(
4
), pp.
1
12
.
70.
Siéfert
,
E.
,
Reyssat
,
E.
,
Bico
,
J.
, and
Roman
,
B.
,
2019
, “
Bio-inspired Pneumatic Shape-Morphing Elastomers
,”
Nat. Mater.
,
18
(
1
), pp.
24
28
.
71.
do Carmo
,
M.
,
1992
,
Riemannian Geometry Mathematics
,
Birkhäuser
,
Boston, MA
.
72.
Garg
,
A.
,
Sageman-Furnas
,
A. O.
,
Deng
,
B.
,
Yue
,
Y.
,
Grinspun
,
E.
,
Pauly
,
M.
, and
Wardetzky
,
M.
,
2014
, “
Wire Mesh Design
,”
ACM Trans. Graph.
,
33
(
4
), pp.
1
12
.
73.
Sageman-Furnas
,
A. O.
,
Chern
,
A.
,
Ben-Chen
,
M.
, and
Vaxman
,
A.
,
2019
, “
Chebyshev Nets From Commuting Polyvector Fields
,”
ACM Trans. Graph. (TOG)
,
38
(
6
), pp.
1
16
.
You do not currently have access to this content.