Abstract

The crack band model, which was shown to provide a superior computational representation of fracture of quasibrittle materials (in this journal, May 2022), still suffers from three limitations: (1) The material damage is forced to be uniform across a one-element wide band because of unrestricted strain localization instability; (2) the width of the fracture process zone is fixed as the width of a single element; and (3) cracks inclined to rectangular mesh lines are represented by a rough zig-zag damage band. Presented is a generalization that overcomes all three, by enforcing a variable multi-element width of the crack band front controlled by a material characteristic length l0. This is achieved by introducing a homogenized localization energy density that increases, after a certain threshold, as a function of an invariant of the third-order tensor of second gradient of the displacement vector, called the sprain tensorη, representing (in isotropic materials) the magnitude of its Laplacian (not expressible as a strain-gradient tensor). The continuum free energy density must be augmented by additional sprain energy Φ(l0η), which affects only the postpeak softening damage. In finite element discretization, the localization resistance is effected by applying triplets of self-equilibrated in-plane nodal forces, which follow as partial derivatives of Φ(l0η). The force triplets enforce a variable multi-element crack band width. The damage distribution across the fracture process zone is non-uniform but smoothed. The standard boundary conditions of the finite element method apply. Numerical simulations document that the crack band propagates through regular rectangular meshes with virtually no directional bias.

References

1.
Nguyen
,
H. T.
,
Pathirage
,
M.
,
Rezaei
,
M.
,
Issa
,
M.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2020
, “
New Perspective of Fracture Mechanics Inspired by Gap Test With Crack-Parallel Compression
,”
Proc. Natl. Acad. Sci. USA
,
117
(
25
), pp.
14015
14020
.
2.
Nguyen
,
H. T.
,
Pathirage
,
M.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2020
, “
Gap Test of Crack-Parallel Stress Effect on Quasibrittle Fracture and Its Consequences
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071012
.
3.
Nguyen
,
H. T.
,
Dönmez
,
A. A.
, and
Bažant
,
Z. P.
,
2021
, “
Structural Strength Scaling Law for Fracture of Plastic-Hardening Metals and Testing of Fracture Properties
,”
Extreme Mech. Lett.
,
43
, p.
101141
.
4.
Mazars
,
J.
,
1981
, “
Mechanical Damage and Fracture of Concrete Structures
,”
Adv. Fracture Res.
,
4
, pp.
1499
1506
.
5.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks
,”
J. Appl. Math. Mech.
,
23
(
3
), pp.
622
636
.
6.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
7.
Planas
,
J.
, and
Elices
,
M.
,
1992
, “
Asymptotic Analysis of a Cohesive Crack: 1. Theoretical Background
,”
Int. J. Fracture
,
55
(
2
), pp.
153
177
.
8.
Planas
,
J.
, and
Elices
,
M.
,
1993
, “
Asymptotic Analysis of a Cohesive Crack: 2. Influence of the Softening Curve
,”
Int. J. Fracture
,
64
(
3
), pp.
221
237
.
9.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
10.
Francfort
,
G. A.
, and
Marigo
,
J. -J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids.
,
46
(
8
), pp.
1319
1342
.
11.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids.
,
48
(
4
), pp.
797
826
.
12.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elast.
,
91
(
1–3
), pp.
5
148
.
13.
Wu
,
J.-Y.
,
2017
, “
A Unified Phase-Field Theory for the Mechanics of Damage and Quasi-Brittle Failure
,”
J. Mech. Phys. Solids.
,
103
, pp.
72
99
.
14.
Wu
,
J.-Y.
,
Huang
,
Y.
,
Zhou
,
H.
, and
Nguyen
,
V. P.
,
2021
, “
Three-Dimensional Phase-Field Modeling of Mode I+ II/III Failure in Solids
,”
Comput. Methods. Appl. Mech. Eng.
,
373
, p.
113537
.
15.
Bažant
,
Z. P.
,
1982
, “
Crack Band Model for Fracture of Geomaterials
,”
4th International Conference on Numerical Methods in Geomech
,
University of Alberta, Edmonton
.
16.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Matériaux et construction
,
16
(
3
), pp.
155
177
.
17.
Červenka
,
J.
,
Bažant
,
Z. P.
, and
Wierer
,
M.
,
2005
, “
Equivalent Localization Element for Crack Band Approach to Mesh-Sensitivity in Microplane Model
,”
Int. J. Numer. Methods Eng.
,
62
(
5
), pp.
700
726
.
18.
Le
,
J.-L.
, and
Eliáš
,
J.
,
2016
, “
A Probabilistic Crack Band Model for Quasibrittle Fracture
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051005
.
19.
Caner
,
F. C.
,
Bažant
,
Z. P.
, and
ASCE
,
H. M.
,
2013
, “
Microplane Model M7 for Plain Concrete. I: Formulation
,”
Mechanics
,
139
(
12
), pp.
1714
1723
.
20.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. II: Calibration and Verification
,”
J. Eng. Mech.
,
139
(
12
), pp.
1724
1735
.
21.
Caner
,
F. C.
,
Bažant
,
Z. P.
, and
Wendner
,
R.
,
2013
, “
Microplane Model M7F for Fiber Reinforced Concrete
,”
Eng. Fract. Mech.
,
105
, pp.
41
57
.
22.
Bažant
,
Z. P.
,
Nguyen
,
H. T.
, and
Abdullah Dönmez
,
A.
,
2022
, “
Critical Comparison of Phase-Field, Peridynamics, and Crack Band Model M7 in Light of Gap Test and Classical Fracture Tests
,”
ASME J. Appl. Mech.
,
89
(
6
), p.
061008
.
23.
M7 subroutine
,
2013
, http://www.civil.northwestern.edu/people/bazant, Accessed December 2, 2022.
24.
Bažant
,
Z. P.
, and
Nguyen
,
H. T.
,
2022
, “
Proposal of a Model Index, MI, for Experimental Comparison of Fracture and Damage Models
,”
J. Eng. Mech.
,
149
(
11
).
25.
Bažant
,
Z. P.
, and
Jirásek
,
M.
,
2002
, “
Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress
,”
J. Eng. Mech.
,
128
(
11
), pp.
1119
1149
.
26.
Cusatis
,
G.
,
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
2003
, “
Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory
,”
J. Eng. Mech.
,
129
(
12
), pp.
1439
1448
.
27.
Cusatis
,
G.
,
Pelessone
,
D.
, and
Mencarelli
,
A.
,
2011
, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory
,”
Cement Concrete Compos.
,
33
(
9
), pp.
881
890
.
28.
Voigt
,
W.
,
1889
, “
Ueber Die Beziehung Zwischen den Beiden Elasticitätsconstanten Isotroper Körper
,”
Annalen der Physik
,
274
(
12
), pp.
573
587
.
29.
Reuss
,
A.
,
1929
, “
Berechnung der Fließgrenze Von Mischkristallen Auf Grund der Plastizitätsbedingung für Einkristalle
,”
ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik
,
9
(
1
), pp.
49
58
.
30.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids.
,
11
(
2
), pp.
127
140
.
31.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London., A.
,
241
(
1226
), pp.
376
396
.
32.
Hashin
,
Z.
,
1988
, “
The Differential Scheme and Its Application to Cracked Materials
,”
J. Mech. Phys. Solids.
,
36
(
6
), pp.
719
734
.
33.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids.
,
13
(
4
), pp.
213
222
.
34.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta. Metall.
,
21
(
5
), pp.
571
574
.
35.
Eringen
,
A. C.
,
1966
, “
Linear Theory of Micropolar Elasticity
,”
J. Math. Mech.
,
15
(
6
), pp.
909
923
.
36.
Eringen
,
A. C.
,
1999
,
Microcontinuum Field Theories
,
Springer
,
New York
, pp.
101
248
.
37.
Bažant
,
Z.
, and
Christensen
,
M.
,
1972
, “
Analogy Between Micropolar Continuum and Grid Frameworks Under Initial Stress
,”
Int. J. Solids. Struct.
,
8
(
3
), pp.
327
346
.
38.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories
,
Oxford University Press
,
New York
.
39.
Christensen
,
R.
,
1969
, “
Viscoelastic Properties of Heterogeneous Media
,”
J. Mech. Phys. Solids.
,
17
(
1
), pp.
23
41
.
40.
Christensen
,
R. M.
,
1991
,
Mechanics of Composite Materials
,
Krieger Pub. Co
,
Malabar
.
41.
Dvorak
,
G.
,
2012
,
Micromechanics of Composite Materials
, Vol.
186
,
Springer Science & Business Media
,
Dordrecht
.
42.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Théorie des corps déformables
,
Librairie Scientifique A. Hermann et Fils
,
Paris
.
43.
Mindlin
,
R.D.
, and
Tiersten
,
H.F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
, pp.
415
448
.
44.
Toupin
,
R.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Rat. Mech. Anal.
,
11
(
1
), pp.
385
414
.
45.
Fleck
,
N.
, and
Hutchinson
,
J.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids.
,
41
(
12
), pp.
1825
1857
.
46.
Fleck
,
N.
, and
Hutchinson
,
J.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
47.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W.
, and
Hutchinson
,
J.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity–I. Theory
,”
J. Mech. Phys. Solids.
,
47
(
6
), pp.
1239
1263
.
48.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W.
, and
Hutchinson
,
J.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids.
,
48
(
1
), pp.
99
128
.
49.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Crystals
,”
Acta. Metall.
,
1
(
2
), pp.
153
162
.
50.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids. Struct.
,
1
(
4
), pp.
417
438
.
51.
Bažant
,
Z. P.
, and
Guo
,
Z.
,
2002
, “
Size Effect and Asymptotic Matching Approximations in Strain-Gradient Theories of Micro-Scale Plasticity
,”
Int. J. Solids. Struct.
,
39
(
21–22
), pp.
5633
5657
.
52.
Jirásek
,
M.
, and
Bažant
,
Z. P.
,
2002
, “
Inelastic Analysis of Structures
,”
John Wiley & Sons
,
New York
.
53.
Fleck
,
N.
,
Muller
,
G.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta. Metall. Mater.
,
42
(
2
), pp.
475
487
.
You do not currently have access to this content.