Abstract

This paper presents a mathematical formulation and implicit numerical algorithm for solving the integral of a three-dimensional momentum balance based on the inelastic evolution of microstructural vectors for thin plates in Eulerian formulation. A recent theoretical discussion (Lee and Rubin, 2020, “Modeling Anisotropic Inelastic Effects in Sheet Metal Forming Using Microstructural Vectors—Part I: Theory,” Int. J. Plast., 134, p. 102783. 10.1016/j.ijplas.2020.102783) showed that Eulerian constitutive equation based on microstructural vectors for thin plates has the advantage of capturing the anisotropic behavior of the material axis with insensitivity to the randomness of the reference configuration. However, all the discussions were theoretically conducted only at a local material point in homogeneous deformation conditions, which do not require consideration of the momentum balance with flexible velocity gradients in a three-dimensional volume. For usability, numerical algorithms are needed to solve evolution of the microstructural vectors in the three-dimensional space. This paper presents the first numerical algorithm to solve the inelastic evolution of microstructural vectors in the Eulerian formulation. A generalized material coordinated system is matched to the microstructural vectors in a three-dimensional space by considering the Eulerian constitutive equations insensitive to the superposed rigid body motions (SRBM). Numerical algorithms were then introduced to implicitly solve the nonlinear momentum balance, evolution of the microstructural vectors, and tangent modulus. The formula and numerical algorithms were validated by predicting the tension tests when the principal loading angle varied from the reference axis. The results show that the proposed numerical algorithm can describe the evolution of the microstructure based on the Eulerian formulation.

References

1.
Budiansky
,
B.
,
1959
, “
A Reassessment of Deformation Theories of Plasticity
,”
ASME J. Appl. Mech.
,
26
(
2
), pp.
259
264
.
2.
Hutchinson
,
J. W.
,
1974
, “Plastic Buckling,”
Advances in Applied Mechanics
, Vol.
14
,
Elsevier
,
New York
, pp.
67
144
.
3.
Sklad
,
M. P.
,
1986
, “
The Numerical Analysis of the Influence of the Material Hardening Behavior on Strain Distribution in Drawing a Sheet Metal Part of Complex Shape
,”
Proceedings of the Congress International Deep Drawing Research Group
, pp.
464
468
.
4.
Batoz
,
J. L.
,
Guo
,
Y. Q.
,
Durouz
,
P.
, and
Detraux
,
J. K.
,
1989
, “
An Effective Algorithm to Estimate the Large Strains in Deep Drawing
,”
Proceedings of the 3rd International Conference on Industrial Forming Processes (NUMIFORM’89)
,
Balkema Rotterdam, The Netherlands
, p.
383
.
5.
Neale
,
K. W.
,
1989
, “Numerical Analysis of Sheet Metal Wrinkling,”
Numiform89
,
E. G.
Thompson
, et al., eds.,
Balkema
,
Rotterdam
, pp.
501
505
.
6.
Ogawa
,
S.
, and
Yamada
,
T.
,
2022
, “
Minimizing Creep Deformation Via Topology Optimization
,”
Finite Elem. Anal. Des.
,
207
, p.
103758
.
7.
Hill
,
R.
,
1957
, “
Stability of Rigid-Plastic Solids
,”
J. Mech. Phys. Solids
,
6
(
1
), pp.
1
8
.
8.
Nádai
,
A.
, and
Hodge
,
P. G.
,
1963
, “
Theory of Flow and Fracture of Solids, Vol. II
,”
ASME J. Appl. Mech.
,
30
(
4
), p.
640
.
9.
Chung
,
K.
, and
Richmond
,
O.
,
1992
, “
Ideal Forming—I. Homogeneous Deformation With Minimum Plastic Work
,”
Int. J. Mech. Sci.
,
34
(
7
), pp.
575
591
.
10.
Chung
,
K.
, and
Richmond
,
O.
,
1993
, “
A Deformation Theory of Plasticity Based on Minimum Work Paths
,”
Int. J. Plast.
,
9
(
8
), pp.
907
920
.
11.
Yoon
,
J. W.
,
Yang
,
D. Y.
,
Chung
,
K.
, and
Barlat
,
F.
,
1999
, “
A General Elastoplastic Finite Element Formulation Based on Incremental Deformation Theory for Planar Anisotropy and its Application to Sheet Metal Forming
,”
Int. J. Plast.
,
15
(
1
), pp.
35
67
.
12.
Havner
,
K. S.
,
1982
, “
Minimum Plastic Work Selects the Highest Symmetry Deformation in Axially-Loaded F.C.C. Crystals
,”
Mech. Mater.
,
1
(
2
), pp.
97
111
.
13.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.
14.
Fish
,
J.
, and
Shek
,
K.
,
2000
, “
Finite Deformation Plasticity Based on the Additive Split of the Rate of Deformation and Hyperelasticity
,”
Comput. Meth. Appl. Mech. Eng.
,
190
(
1–2
), pp.
75
93
.
15.
Bilby
,
B. A.
,
Gardner
,
L. R. T.
, and
Stroh
,
A. N.
,
1957
, “
Continuous Distributions of Dislocations and the Theory of Plasticity
,”
Proceedings of the 9th International Congress of Applied Mechanics
,
University de Brussels
, pp.
35
44
.
16.
Binesh
,
S. M.
,
Hataf
,
N.
, and
Ghahramani
,
A.
,
2010
, “
Elasto-Plastic Analysis of Reinforced Soils Using Mesh-Free Method
,”
Appl. Math. Comput.
,
215
(
12
), pp.
4406
4421
.
17.
Kim
,
J. B.
,
Yang
,
D. Y.
,
Yoon
,
J. W.
, and
Barlat
,
F.
,
2000
, “
The Effect of Plastic Anisotropy on Compressive Instability in Sheet Metal Forming
,”
Int. J. Plast.
,
16
(
6
), pp.
649
676
.
18.
Park
,
S. H.
,
Yoon
,
J. W.
,
Yang
,
D. Y.
, and
Kim
,
Y. H.
,
1999
, “
Optimum Blank Design in Sheet Metal Forming by the Deformation Path Iteration Method
,”
Int. J. Mech. Sci.
,
41
(
10
), pp.
1217
1232
.
19.
Kim
,
J. B.
,
Yoon
,
J. W.
, and
Yang
,
D. Y.
,
2000
, “
Wrinkling Initiation and Growth in Modified Yoshida Buckling Test: Finite Element Analysis and Experimental Comparison
,”
Int. J. Mech. Sci.
,
42
(
9
), pp.
1683
1714
.
20.
Yoon
,
J. W.
,
Song
,
I. S.
,
Yang
,
D. Y.
,
Chung
,
K.
, and
Barlat
,
F.
,
1995
, “
Finite Element Method for Sheet Forming Based on an Anisotropic Strain-Rate Potential and the Convected Coordinate System
,”
Int. J. Mech. Sci.
,
37
(
7
), pp.
733
752
.
21.
Lee
,
E. H.
, and
Kim. Yang
,
T. H.
,
2020
, “
Topology Optimization of Elastoplastic Behavior Conditions by Selectively Suppressing Plastic Work
,”
Mathematics
,
8
(
11
), p.
2062
.
22.
Lee
,
E. H.
,
Yang
,
D. Y.
,
Yoon
,
J. W.
, and
Yang
,
W. H.
,
2017
, “
A Manufacturing Process Using the Infrared Ray Local Heating Method for Seat Cross Members
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
3299
3305
.
23.
Rubin
,
M. B.
,
1996
, “
On the Treatment of Elastic Deformation in Finite Elasticviscoplastic Theory
,”
Int. J. Plast.
,
12
(
7
), pp.
951
965
.
24.
Rubin
,
M. B.
,
2001
, “
Physical Reasons for Abandoning Plastic Deformation Measures in Plasticity and Viscoplasticity Theory
,”
Arch. Mech.
,
53
, pp.
519
539
.
25.
Bertram
,
A.
, and
Kraska
,
M.
,
1995
, “
Description of Finite Plastic Deformations in Single Crystals by Material Isornorphisms
,”
Proceedings of the IUTAM Syrup. On Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics
,
D. F.
Parker
, and
A. H.
England
, eds.,
Kluwer
,
Netherlands
, pp.
77
90
.
26.
Onat
,
E. T.
,
1968
, “The Notion of State and Its Implications in Thermodynamics of Inelastic Solids,”
Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving fluids
.
Springer
,
New York
, pp.
292
314
.
27.
Eckart
,
C.
,
1948
, “
The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity
,”
Phys. Rev.
,
73
(
4
), pp.
373
382
.
28.
Besseling
,
J. F.
,
1966
, “A Thermodynamic Approach to Rheology,”
Proceedings of the IUTAM Symposium on Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids
,
H.
Parkus
, and
L. I.
Sedov
, eds.,
Springer
,
Vienna
, pp.
16
53
.
29.
Leonov
,
A. I.
,
1976
, “
Nonequilibrium Thermodynamics and Rheology of Viscoelastic Polymer Media
,”
Rheol. Acta
,
15
(
2
), pp.
85
98
.
30.
Rubin
,
M. B.
,
1994
, “
Plasticity Theory Formulated in Terms of Physically Based Microstructural Variables—Part I. Theory
,”
Int. J. Solids Struct.
,
31
(
19
), pp.
2615
2634
.
31.
Rubin
,
M. B.
,
2012
, “
Removal of Unphysical Arbitrariness in Constitutive Equations for Elastically Anisotropic Nonlinear Elastic–Viscoplastic Solids
,”
Int. J. Eng. Sci.
,
53
, pp.
38
45
.
32.
Rubin
,
M. B.
,
2019
, “
A New Approach to Modeling the Thermomechanical, Orthotropic, Elastic-Inelastic Response of Soft Materials
,”
Mech. Soft Mater.
,
1
(
1
), p.
3
.
33.
Valkov
,
B.
,
Rycroft
,
C. H.
, and
Kamrin
,
K.
,
2015
, “
Eulerian Method for Multiphase Interactions of Soft Solid Bodies in Fluids
,”
ASME J. Appl. Mech.
,
82
(
4
), p.
041011
.
34.
Volokh
,
K. Y.
,
2021
, “
Direct Eulerian Formulation of Anisotropic Hyperelasticity
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
024502
.
35.
Eshraghi
,
A.
,
Papoulia
,
K. D.
, and
Jahed
,
H.
,
2013
, “
Eulerian Framework for Inelasticity Based on the Jaumann Rate and a Hyperelastic Constitutive Relation—Part I: Rate-Form Hyperelasticity
,”
ASME J. Appl. Mech.
80
(
2
), p.
021027
.
36.
Kroon
,
M.
, and
Rubin
,
M. B.
,
2020
, “
A Strongly Objective, Robust Integration Algorithm for Eulerian Evolution Equations Modeling General Anisotropic Elastic-Inelastic Material Response
,”
Finite Elem. Anal. Des.
,
177
, p.
103422
.
37.
Lee
,
E. H.
, and
Rubin
,
M. B.
,
2020
, “
Modeling Anisotropic Inelastic Effects in Sheet Metal Forming Using Microstructural Vectors—Part I: Theory
,”
Int. J. Plast.
,
134
, p.
102783
.
38.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, A
,
193
(
1033
), pp.
281
297
.
39.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Lege
,
D. J.
,
Pourboghrat
,
F.
,
Choi
,
S. H.
, and
Chu
,
E.
,
2003
, “
Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory
,”
Int. J. Plast.
,
19
(
9
), pp.
1297
1319
.
40.
Banabic
,
D.
,
Aretz
,
H.
,
Comsa
,
D. S.
, and
Paraianu
,
L.
,
2005
, “
An Improved Analytical Description of Orthotropy in Metallic Sheets
,”
Int. J. Plast.
,
21
(
3
), pp.
493
512
.
41.
Lee
,
E. H.
,
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2017
, “
A Yield Criterion Through Coupling of Quadratic and Non-Quadratic Functions for Anisotropic Hardening With Non-Associated Flow Rule
,”
Int. J. Plast.
,
99
, pp.
120
143
.
42.
Lee
,
E. H.
, and
Rubin
,
M. B.
,
2021
, “
Modeling Inelastic Spin of Microstructural Vectors in Sheet Metal Forming
,”
Int. J. Solids Struct.
,
225
, p.
111067
.
43.
Lee
,
E. H.
, and
Rubin
,
M. B.
,
2022
, “
Eulerian Constitutive Equations for the Coupled Influences of Anisotropic Yielding, the Bauschinger Effect and the Strength-Differential Effect for Plane Stress
,”
Int. J. Solids Struct.
,
241
, p.
111475
.
44.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.
45.
Lee
,
E. H.
,
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2017
, “
A New Strategy to Describe Nonlinear Elastic and Asymmetric Plastic Behaviors With One Yield Surface
,”
Int. J. Plast.
,
98
, pp.
217
238
.
46.
Lee
,
E. H.
,
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2018
, “
Kinematic Hardening Model Considering Directional Hardening Response
,”
Int. J. Plas.
,
110
, pp.
145
165
.
47.
Barlat
,
F.
,
Gracio
,
J. J.
,
Lee
,
M. G.
,
Rauch
,
E. F.
, and
Vincze
,
G.
,
2011
, “
An Alternative to Kinematic Hardening in Classical Plasticity
,”
Int. J. Plast.
,
27
(
9
), pp.
1309
1327
.
48.
Lee
,
E. H.
,
Choi
,
H. S.
,
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2019
, “
Combined Anisotropic and Distortion Hardening to Describe the Bauschinger and Directional Hardening Response
,”
Int. J. Plast.
,
122
, pp.
73
88
.
49.
Lyu
,
D.
, and
Li
,
S.
,
2017
, “
Multiscale Crystal Defect Dynamics: A Coarse-Grained Lattice Defect Model Based on Crystal Microstructure
,”
J. Mech. Phys. Solids
,
107
, pp.
379
410
.
50.
Lyu
,
D.
, and
Li
,
S.
,
2019
, “
A Multiscale Dislocation Pattern Dynamics: Towards an Atomistic-Informed Crystal Plasticity Theory
,”
J. Mech. Phys. Solids
,
122
, pp.
613
632
.
51.
Zhang
,
L. W.
,
Xie
,
Y.
,
Lyu
,
D.
, and
Li
,
S.
,
2019
, “
Multiscale Modeling of Dislocation Patterns and Simulation of Nanoscale Plasticity in Body-Centered Cubic (BCC) Single Crystals
,”
J. Mech. Phys. Solids
,
130
, pp.
297
319
.
52.
Tong
,
W.
,
Tao
,
H.
, and
Jiang
,
X.
,
2004
, “
Modeling the Rotation of Orthotropic Axes of Sheet Metals Subjected to Off-Axis Uniaxial Tension
,”
ASME J. Appl. Mech.
,
71
(
4
), pp.
21
531
.
You do not currently have access to this content.