Abstract

An alternating efficient approach for predicting non-stationary response of randomly excited nonlinear systems is proposed by a combination of radial basis function neural network (RBFNN) and stochastic averaging method (SAM). First, the n-degree-of-freedom quasi-non-integrable-Hamiltonian (QNIH) system is reduced to a one-dimensional averaged Itô differential equation within the framework of SAM for QNIH. Subsequently, the associated Fokker–Planck–Kolmogorov (FPK) equation is solved with the RBFNN. Specifically, the solution of the associated FPK equation is expressed in a linear combination of a series of basis functions with time-correlation weights. These time-depended weights are solved by minimizing a loss function, which involves the residual of the differential equations and the constraint conditions. Three typical nonlinear systems are studied to verify the applicability of the developed scheme. Comparisons to the data generated by simulation technique indicate that the approach yields reliable results with high efficiency.

References

1.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Courier Corporation
,
New York
, pp.
1
14
.
2.
Yu
,
J. S.
,
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1997
, “
A New Path Integration Procedure Based on Gauss-Legendre Scheme
,”
Int. J. Non-Linear Mech.
,
32
(
4
), pp.
759
768
.
3.
Kougioumtzoglou
,
I. A.
,
Di Matteo
,
A.
,
Spanos
,
P. D.
,
Pirrotta
,
A.
, and
Di Paola
,
M.
,
2015
, “
An Efficient Wiener Path Integral Technique Formulation for Stochastic Response Determination of Nonlinear Mdof Systems
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101005
.
4.
Spencer
,
B. F.
, and
Bergman
,
L. A.
,
1993
, “
On the Numerical Solution of the Fokker-Planck Equation for Nonlinear Stochastic Systems
,”
Nonlinear Dyn.
,
4
(
4
), pp.
357
372
.
5.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1988
, “
First-Passage Time Probability of Non-Linear Stochastic Systems by Generalized Cell Mapping Method
,”
J. Sound Vib.
,
124
(
2
), pp.
233
248
.
6.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1990
, “
The Generalized Cell Mapping Method in Nonlinear Random Vibration Based Upon Short-Time Gaussian Approximation
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
1018
1025
.
7.
Sun
,
J. Q.
,
Xiong
,
F. R.
,
Schütze
,
O.
, and
Hernández
,
C.
,
2018
,
Cell Mapping Methods
,
Springer
,
Berlin
.
8.
Muscolino
,
G.
,
Ricciardi
,
G.
, and
Vasta
,
M.
,
1997
, “
Stationary and Non-Stationary Probability Density Function for Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
32
(
6
), pp.
1051
1064
.
9.
Liu
,
Q.
, and
Davies
,
H. G.
,
1990
, “
The Non-Stationary Response Probability Density Functions of Non-Linearly Damped Oscillators Subjected to White Noise Excitations
,”
J. Sound Vib.
,
139
(
3
), pp.
425
435
.
10.
Di Paola
,
M.
,
2014
, “
Fokker Planck Equation Solved in Terms of Complex Fractional Moments
,”
Probab. Eng. Eng. Mech.
,
38
, pp.
70
76
.
11.
Guo
,
S. S.
,
2018
, “
Transient Responses of Stochastic Systems Under Stationary Excitations
,”
Probab. Eng. Eng. Mech.
,
53
, pp.
59
65
.
12.
Guo
,
S. S.
,
2018
, “
Nonstationary Solutions of Nonlinear Dynamical Systems Excited by Gaussian White Noise
,”
Nonlinear Dyn.
,
92
(
2
), pp.
613
626
.
13.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1986
, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non-Linear Mech.
,
21
(
2
), pp.
111
134
.
14.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Nonintegrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
157
164
.
15.
Deng
,
M. L.
,
Mu
,
G. J.
, and
Zhu
,
W. Q.
,
2021
, “
Random Response of Wake-Oscillator Excited by Fluctuating Wind
,”
ASME J. Appl. Mech.
,
88
(
10
), p.
101002
.
16.
Deng
,
M. L.
, and
Zhu
,
W. Q.
,
2007
, “
Stochastic Averaging of Mdof Quasi Integrable Hamiltonian Systems Under Wide-Band Random Excitation
,”
J. Sound Vib.
,
305
(
4
), pp.
783
794
.
17.
Sun
,
J. J.
,
Huan
,
R. H.
,
Deng
,
M. L.
, and
Zhu
,
W. Q.
,
2021
, “
A Novel Method for Evaluating the Averaged Drift and Diffusion Coefficients of High DOF Quasi-Non-Integrable Hamiltonian Systems
,”
Nonlinear Dyn.
,
106
(
4
), pp.
2975
2989
.
18.
Spanos
,
P. D.
,
Sofi
,
A.
, and
Di Paola
,
M.
,
2007
, “
Nonstationary Response Envelope Probability Densities of Nonlinear Oscillators
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
315
324
.
19.
Jin
,
X. L.
, and
Huang
,
Z. L.
,
2010
, “
Nonstationary Probability Densities of Strongly Nonlinear Single-Degree-of-Freedom Oscillators With Time Delay
,”
Nonlinear Dyn.
,
59
(
1
), pp.
195
206
.
20.
Jin
,
T.
,
Jin
,
X. L.
,
Wang
,
Y.
, and
Huang
,
Z. L.
,
2012
, “
Transient Probability Density of Nonlinear Multi-Degree-of-Freedom System With Time Delay
,”
Mech. Res. Commun.
,
44
, pp.
15
23
.
21.
Liu
,
Z. H.
,
Geng
,
J. H.
, and
Zhu
,
W. Q.
,
2016
, “
Transient Stochastic Response of Quasi Non-Integerable Hamiltonian System
,”
Probab. Eng. Eng. Mech.
,
43
, pp.
148
155
.
22.
Jin
,
X.
,
Wang
,
Y.
,
Huang
,
Z.
, and
Di Paola
,
M.
,
2014
, “
Constructing Transient Response Probability Density of Non-Linear System Through Complex Fractional Moments
,”
Int. J. Non-Linear Mech.
,
65
, pp.
253
259
.
23.
Itoh
,
D.
, and
Tsuchida
,
T.
,
2022
, “
Transient Response Analysis of a System With Nonlinear Stiffness and Nonlinear Damping Excited by Gaussian White Noise Based on Complex Fractional Moments
,”
Acta Mech
,
233
(
7
), pp.
2781
2796
.
24.
Xie
,
X.
,
Li
,
J.
,
Liu
,
D.
, and
Guo
,
G.
,
2017
, “
Transient Response of Nonlinear Vibro-impact System Under Gaussian White Noise Excitation Through Complex Fractional Moments
,”
Acta Mech
,
228
, pp.
1153
1163
.
25.
Niu
,
L.
,
Xu
,
W.
, and
Guo
,
Q.
,
2021
, “
Transient Response of the Time-delay System Excited by Gaussian Noise Based on Complex Fractional Moments
,”
Chaos
,
31
(
5
), p.
053111
.
26.
Wang
,
X.
,
Jiang
,
J.
,
Hong
,
L.
, and
Sun
,
J. Q.
,
2022
, “
Random Vibration Analysis With Radial Basis Function Neural Networks
,”
Int. J. Dyn. Control
,
10
(
5
), pp.
1385
1394
.
27.
Wang
,
X.
,
Jiang
,
J.
,
Hong
,
L.
, and
Sun
,
J. Q.
,
2022
, “
First-Passage Problem in Random Vibrations With Radial Basis Function Neural Networks
,”
ASME J. Vib. Acoust.
,
144
(
5
), p.
051014
.
28.
Ye
,
W. W.
,
Chen
,
L. C.
,
Qian
,
J. M.
, and
Sun
,
J. Q.
,
2022
, “
RBFNN for Calculating the Stationary Response of SDOF Nonlinear Systems Excited by Poisson White Noise
,”
Int. J. Struct. Stab. Dyn.
,
21
(
13
), p.
2350019
.
29.
Qian
,
J. M.
,
Chen
,
L. C.
, and
Sun
,
J. Q.
,
2022
, “
Random Vibration Analysis of Vibro-impact Systems: RBF Neural Network Method
,”
Int. J. Non-Linear Mech.
, p.
104261
.
You do not currently have access to this content.