Abstract

Tunnels, pipelines, and other subterranean circular cavities are common components of modern infrastructure. In addition, seismic activities are common in many areas with pipelines, which may put these structures under unknown risk of fracture. A particular risk case of interest can be characterized as a plane strain problem with a circular cavity and crack in an infinite plane under antiplane stress. Antiplane, i.e., mode III, loading has seen less study relative to modes I and II due to the lower risk factor in structures that are especially vulnerable to fracture (e.g., in the automotive and aerospace industries), and the increase in complexity compared to modes I and II. The work here further explores this phenomenon on circular cavities, and particularly, the effect of non-radial cracks on the stress intensity factor via a parametric study. The study introduces a semi-analytical method and also uses commercial finite element software to further expand on the investigation.

References

1.
Yokobori
,
T.
,
Kamei
,
A.
, and
Konosu
,
S.
,
1971
, “
Report of Research Institute for Strength and Fracture of Materials
,”
Tohoku University
,
Sendai, Japan
,
7
, p.
57
.
2.
Yokobori
,
T.
,
Ichikawa
,
M.
,
Konosu
,
S.
, and
Takahashi
,
R.
,
1972
, “
Report of Research Institute for Strength and Fracture of Materials
,”
Tohoku University
,
Sendai, Japan
,
8
, p.
1
.
3.
Tweed
,
J.
, and
Melrose
,
G.
,
1989
, “
Cracks at the Edge of an Elliptic Hole in Out of Plane Shear
,”
Eng. Fract. Mech.
,
34
(
3
), pp.
743
747
.
4.
Sih
,
G. C.
,
1963
, “
Stress-Intensity Factors for Longitudinal Shear Cracks
,”
AIAA J.
,
1
(
10
), pp.
2387
2388
.
5.
Rice
,
J. R.
,
1966
, “
Contained Plastic Deformation Near Cracks and Notches Under Longitudinal Shear
,”
Int. J. Fract. Mech.
,
2
(
2
), pp.
426
447
.
6.
Rice
,
J. R.
,
1968
, “Mathematical Analysis in the Mechanics of Fracture,”
Fracture: An Advanced Treatise
, 2nd ed.,
H
.
Liebowitz
, ed.,
Academic Press
,
New York
, pp.
191
311
.
7.
Rice
,
J. R.
,
1967
, “
Stresses Due to a Sharp Notch in a Work Hardening Elastic-Plastic Material Loaded by Longitudinal Shear
,”
ASME J. Appl. Mech.
,
34
(
2
), pp.
287
298
.
8.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.
9.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
, pp.
131
150
.
10.
Melenk
,
J.
, and
Babuška
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
39
(
1–4
), pp.
289
314
.
11.
Nagashima
,
T.
,
Omoto
,
Y.
, and
Tani
,
S.
,
2003
, “
Stress Intensity Factor Analysis of Interface Cracks Using X-FEM
,”
Comput. Methods Appl. Mech. Eng.
,
56
(
8
), pp.
1151
1173
.
12.
Huynh
,
D. B. P.
, and
Belytschko
,
T.
,
2009
, “
The Extended Finite Element Method for Fracture in Composite Materials
,”
Int. J. Numer. Methods Eng.
,
77
(
2
), pp.
214
239
.
13.
Javanmardi
,
M. R.
, and
Maheri
,
M. R.
,
2019
, “
Extended Finite Element Method and Anisotropic Damage Plasticity for Modelling Crack Propagation in Concrete
,”
Finite Elem. Anal. Des.
,
165
, pp.
1
20
.
14.
Roth
,
S.-N.
,
Léger
,
P.
, and
Soulaïmani
,
A.
,
2020
, “
Strongly Coupled XFEM Formulation for Non-planar Three-Dimensional Simulation of Hydraulic Fracturing With Emphasis on Concrete Dams
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112899
.
15.
Zhuang
,
Z.
,
Liu
,
Z.
,
Cheng
,
B.
, and
Liao
,
J.
,
2014
,
Extended Finite Element Method
,
Elsevier Science and Technology
,
Waltham, MA
, p.
137
.
16.
Liu
,
X. Y.
,
Xiao
,
Q. Z.
, and
Karihaloo
,
B. L.
,
2004
, “
XFEM for Direct Evaluation of Mixed Mode SIFs in Homogeneous and Bi-materials
,”
Int. J. Numer. Methods Eng.
,
59
(
8
), pp.
1103
1118
.
17.
Areias
,
P. M. A.
, and
Belytschko
,
T.
,
2005
, “
Analysis of Three-Dimensional Crack Initiation and Propagation Using the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
63
(
5
), pp.
760
788
.
18.
Shen
,
Y.
, and
Lew
,
A.
,
2010
, “
An Optimally Convergent Discontinuous Galerkin-Based Extended Finite Element Method for Fracture Mechanics
,”
Int. J. Numer. Methods Eng.
,
82
(
6
), pp.
716
755
.
19.
Marco
,
M.
,
Infante-García
,
D.
,
Belda
,
R.
, and
Giner
,
E.
,
2020
, “
A Comparison Between Some Fracture Modelling Approaches in 2D LEFM Using Finite Elements
,”
Int. J. Fract.
,
223
(
1–2
), pp.
151
171
.
20.
Fries
,
T.-P.
, and
Belytschko
,
T.
,
2010
, “
The Extended/Generalized Finite Element Method: An Overview of the Method and Its Applications
,”
Int. J. Numer. Methods Eng.
,
84
(
3
), pp.
253
304
.
21.
Westergaard
,
H. M.
,
1939
, “
Bearing Pressures and Cracks: Bearing Pressures Through a Slightly Waved Surface or Through a Nearly Flat Part of a Cylinder, and Related Problems of Cracks
,”
ASME J. Appl. Mech.
,
6
(
2
), pp. pp.
A49
A53
.
22.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
(
1
), pp.
109
114
.
23.
Williams
,
M. L.
,
1952
, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
,
19
(
4
), pp.
526
528
.
24.
Isida
,
M.
, and
Tsuru
,
H.
,
1981
, “
A Circular Inclusion and an Arbitrary Array of Cracks in Infinite Body Under Antiplane Shear
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
47
(
420
), pp.
810
817
.
25.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
ASME Press
,
New York
.
You do not currently have access to this content.