Abstract
The roton-like dispersions support the “return flow” of acoustic waves; such phenomena were only observed in quantum systems. In this paper, we aim to investigate the nonlinear roton-like dispersion in a mechanical metamaterial with both nonlinear chains and nonlinear resonators with nonlocal connection; both theoretical and numerical methods are used to analyze the system, and some new phenomena such as amplitude-dependent roton-like behaviors are observed. This work opens a new way for designing an extremely low-frequency vibration isolator with a stable configuration.
Issue Section:
Research Papers
References
1.
Hussein
, M. I.
, Leamy
, M. J.
, and Ruzzene
, M.
, 2014
, “Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,” Appl. Mech. Rev
, 66
(4
), p. 040802
. 2.
Kaina
, N.
, Lemoult
, F.
, Fink
, M.
, and Lerosey
, G.
, 2015
, “Negative Refractive Index and Acoustic Superlens From Multiple Scattering in Single Negative Metamaterials
,” Nature
, 525
(7567
), pp. 77
–81
. 3.
Garcia-Chocano
, V. M.
, Christensen
, J.
, and Sanchez-Dehesa
, J.
, 2014
, “Negative Refraction and Energy Funneling by Hyperbolic Materials: an Experimental Demonstration in Acoustics
,” Phys. Rev. Lett.
, 112
(14
), p. 144301
. 4.
Zhang
, S.
, Xia
, C.
, and Fang
, N.
, 2011
, “Broadband Acoustic Cloak for Ultrasound Waves
,” Phys. Rev. Lett.
, 106
(2
), p. 024301
. 5.
Chen
, Y.
, and Wang
, L.
, 2014
, “Periodic Co-Continuous Acoustic Metamaterials With Overlapping Locally Resonant and Bragg Band Gaps
,” Appl. Phys. Lett.
, 105
(19
), p. 191907
. 6.
Manktelow
, K.
, Leamy
, M. J.
, and Ruzzene
, M.
, 2010
, “Multiple Scales Analysis of Wave–Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,” Nonlinear Dyn.
, 63
(1–2
), pp. 193
–203
.7.
Yang
, X. D.
, Cui
, Q. D.
, Qian
, Y. J.
, Zhang
, W.
, and Lim
, C. W.
, 2010
, “Modulating Band Gap Structure by Parametric Excitations
,” ASME J. Appl. Mech.
, 85
(6
), p. 061012
. 8.
Cui
, J.-G.
, Yang
, T.
, Niu
, M.-Q.
, and Chen
, L.-Q.
, 2022
, “Tunable Roton-Like Dispersion Relation With Parametric Excitations
,” ASME J. Appl. Mech.
, 89
(11
), p. 111005
. 9.
Maznev
, A. A.
, Every
, A. G.
, and Wright
, O. B.
, 2013
, “Reciprocity in Reflection and Transmission: What Is a ‘Phonon Diode’?
,” Wave Motion
, 50
(4
), pp. 776
–784
. 10.
Wei
, L.-S.
, Wang
, Y.-Z.
, and Wang
, Y.-S.
, 2020
, “Nonreciprocal Transmission of Nonlinear Elastic Wave Metamaterials by Incremental Harmonic Balance Method
,” Int. J. Mech. Sci
, 173
, p. 105433
. 11.
Boechler
, N.
, Theocharis
, G.
, and Daraio
, C.
, 2011
, “Bifurcation-Based Acoustic Switching and Rectification
,” Nat. Mater.
, 10
(9
), pp. 665
–668
. 12.
Nassar
, H.
, Yousefzadeh
, B.
, and Fleury
, R.
, 2020
, “Nonreciprocity in Acoustic and Elastic Materials
,” Nat. Rev. Mater.
, 5
(9
), pp. 667
–685
. 13.
Li
, F.
, Anzel
, P.
, Yang
, J.
, Kevrekidis
, P. G.
, and Daraio
, C.
, 2014
, “Granular Acoustic Switches and Logic Elements
,” Nat. Commun.
, 5
(1
), p. 5311
. 14.
Liu
, Z.
, Zhang
, X.
, Mao
, Y.
, Zhu
, Y. Y.
, Yang
, Z.
, Chan
, C. T.
, and Sheng
, P.
, 2000
, “Locally Resonant Sonic Materials
,” Science
, 289
(5485
), pp. 1734
–1736
. 15.
Liu
, Z.
, Chan
, C. T.
, and Sheng
, P.
, 2005
, “Analytic Model of Phononic Crystals With Local Resonances
,” Phys. Rev. B
, 71
(1
), p. 014103
. 16.
Mei
, J.
, Liu
, Z.
, Wen
, W.
, and Sheng
, P.
, 2006
, “Effective Mass Density of Fluid-Solid Composites
,” Phys. Rev. Lett
, 96
(2
), p. 024301
. 17.
Mei
, J.
, Liu
, Z.
, Wen
, W.
, and Sheng
, P.
, 2007
, “Effective Dynamic Mass Density of Composites
,” Phys. Rev. B
, 76
(13
), p. 134205
. 18.
Fang
, N.
, Xi
, D.
, Xu
, J.
, Ambati
, M.
, Srituravanich
, W.
, Sun
, C.
, and Zhang
, X.
, 2006
, “Ultrasonic Metamaterials With Negative Modulus
,” Nat. Mater.
, 5
(6
), pp. 452
–456
. 19.
Yang
, Z.
, Mei
, J.
, Yang
, M.
, Chan
, N. H.
, and Sheng
, P.
, 2008
, “Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,” Phys. Rev. Lett
, 101
(20
), p. 204301
. 20.
Mei
, J.
, Ma
, G.
, Yang
, M.
, Yang
, Z.
, Wen
, W.
, and Sheng
, P.
, 2012
, “Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound
,” Nat Commun
, 3
(1
), pp. 756
. 21.
Zhou
, W. J.
, Li
, X. P.
, Wang
, Y. S.
, Chen
, W. Q.
, and Huang
, G. L.
, 2018
, “Spectro-Spatial Analysis of Wave Packet Propagation in Nonlinear Acoustic Metamaterials
,” J. Sound Vib.
, 413
, pp. 250
–269
. 22.
Bukhari
, M.
, and Barry
, O.
, 2020
, “Spectro-Spatial Analyses of a Nonlinear Metamaterial With Multiple Nonlinear Local Resonators
,” Nonlinear Dyn.
, 99
(2
), pp. 1539
–1560
. 23.
Wang
, B.
, Liu
, J.
, Soh
, A. K.
, and Liang
, N.
, 2022
, “On Band Gaps of Nonlocal Acoustic Lattice Metamaterials: A Robust Strain Gradient Model
,” Appl. Math. Mech
, 43
(1
), pp. 1
–20
. 24.
Xu
, X.
, Barnhart
, M. V.
, Fang
, X.
, Wen
, J.
, Chen
, Y.
, and Huang
, G.
, 2019
, “A Nonlinear Dissipative Elastic Metamaterial for Broadband Wave Mitigation
,” Int. J. Mech. Sci
, 164
, p. 105159
. 25.
Maznev
, A. A.
, and Every
, A. G.
, 2009
, “Surface Acoustic Waves With Negative Group Velocity in a Thin Film Structure on Silicon
,” Appl. Phys. Lett
, 95
(1
), p. 011903
. 26.
Zhu
, R.
, Liu
, X.
, Hu
, G.
, Sun
, C. T.
, and Huang
, G. L.
, 2014
, “Negative Refraction of Elastic Waves at the Deep-Subwavelength Scale in a Single-Phase Metamaterial
,” Nat. Commun.
, 5
(1
), pp. 5510
. 27.
Hou
, Z.
, Ni
, H.
, and Assouar
, B.
, 2018
, “PT-Symmetry for Elastic Negative Refraction
,” Phys. Rev. Appl.
, 10
(4
), p. 044071
. 28.
Bramhavar
, S.
, Prada
, C.
, Maznev
, A. A.
, Every
, A.
, Norris
, T. B.
, and Murray
, T. W.
, 2011
, “Negative Refraction and Focusing of Elastic Lamb Waves at an Interface
,” Phys. Rev. B
, 83
(1
), p. 014106
. 29.
Chen
, Y.
, Kadic
, M.
, and Wegener
, M.
, 2021
, “Roton-Like Acoustical Dispersion Relations in 3D Metamaterials
,” Nat. Commun.
, 12
(1
), p. 3278
. 30.
Zhou
, J.
, Wang
, X.
, Xu
, D.
, and Bishop
, S.
, 2015
, “Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,” J. Sound Vib.
, 346
, pp. 53
–69
. 31.
Zhou
, J.
, Dou
, L.
, Wang
, K.
, Xu
, D.
, and Ouyang
, H.
, 2019
, “A Nonlinear Resonator With Inertial Amplification for Very Low-Frequency Flexural Wave Attenuations in Beams
,” Nonlinear Dyn.
, 96
(1
), pp. 647
–665
. 32.
Zhao
, F.
, Ji
, J.
, Ye
, K.
, and Luo
, Q.
, 2021
, “An Innovative Quasi-Zero Stiffness Isolator With Three Pairs of Oblique Springs
,” Int. J. Mech. Sci
, 192
, p. 106093
. 33.
Zhao
, F.
, Cao
, S.
, Luo
, Q.
, and Ji
, J.
, 2022
, “Enhanced Design of the Quasi-Zero Stiffness Vibration Isolator With Three Pairs of Oblique Springs: Theory and Experiment
,” J. Vib. Control.
34.
Ding
, H.
, and Chen
, L. Q.
, 2019
, “Nonlinear Vibration of a Slightly Curved Beam With Quasi-Zero-Stiffness Isolators
,” Nonlinear Dyn.
, 95
(3
), pp. 2367
–2382
. 35.
Niu
, M. Q.
, and Chen
, L. Q.
, 2022
, “Optimization of a Quasi-Zero-Stiffness Isolator via Oblique Beams
,” Adv. Appl. Nonlinear Dyn.
, 799
, pp. 394
–408
.36.
Arisetti
, R. K.
, Leamy
, M. J.
, and Ruzzene
, M.
, 2010
, “A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,” ASME. J. Vib. Acoust
, 132
(3
), p. 031001
. 37.
Chakraborty
, G.
, and Mallik
, A. K.
, 2001
, “Dynamics of a Weakly Non-Linear Periodic Chain
,” Int. J. Non Linear Mech.
, 36
(2
), pp. 375
–389
. 38.
Hussein
, M. I.
, and Khajehtourian
, R.
, 2018
, “Nonlinear Bloch Waves and Balance Between Hardening and Softening Dispersion
,” Proc. R. Soc. A
, 474
(2217
), p. 20180173
. Copyright © 2023 by ASME
You do not currently have access to this content.