Abstract

The roton-like dispersions support the “return flow” of acoustic waves; such phenomena were only observed in quantum systems. In this paper, we aim to investigate the nonlinear roton-like dispersion in a mechanical metamaterial with both nonlinear chains and nonlinear resonators with nonlocal connection; both theoretical and numerical methods are used to analyze the system, and some new phenomena such as amplitude-dependent roton-like behaviors are observed. This work opens a new way for designing an extremely low-frequency vibration isolator with a stable configuration.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
Appl. Mech. Rev
,
66
(
4
), p.
040802
.
2.
Kaina
,
N.
,
Lemoult
,
F.
,
Fink
,
M.
, and
Lerosey
,
G.
,
2015
, “
Negative Refractive Index and Acoustic Superlens From Multiple Scattering in Single Negative Metamaterials
,”
Nature
,
525
(
7567
), pp.
77
81
.
3.
Garcia-Chocano
,
V. M.
,
Christensen
,
J.
, and
Sanchez-Dehesa
,
J.
,
2014
, “
Negative Refraction and Energy Funneling by Hyperbolic Materials: an Experimental Demonstration in Acoustics
,”
Phys. Rev. Lett.
,
112
(
14
), p.
144301
.
4.
Zhang
,
S.
,
Xia
,
C.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
(
2
), p.
024301
.
5.
Chen
,
Y.
, and
Wang
,
L.
,
2014
, “
Periodic Co-Continuous Acoustic Metamaterials With Overlapping Locally Resonant and Bragg Band Gaps
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191907
.
6.
Manktelow
,
K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
Multiple Scales Analysis of Wave–Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
193
203
.
7.
Yang
,
X. D.
,
Cui
,
Q. D.
,
Qian
,
Y. J.
,
Zhang
,
W.
, and
Lim
,
C. W.
,
2010
, “
Modulating Band Gap Structure by Parametric Excitations
,”
ASME J. Appl. Mech.
,
85
(
6
), p.
061012
.
8.
Cui
,
J.-G.
,
Yang
,
T.
,
Niu
,
M.-Q.
, and
Chen
,
L.-Q.
,
2022
, “
Tunable Roton-Like Dispersion Relation With Parametric Excitations
,”
ASME J. Appl. Mech.
,
89
(
11
), p.
111005
.
9.
Maznev
,
A. A.
,
Every
,
A. G.
, and
Wright
,
O. B.
,
2013
, “
Reciprocity in Reflection and Transmission: What Is a ‘Phonon Diode’?
,”
Wave Motion
,
50
(
4
), pp.
776
784
.
10.
Wei
,
L.-S.
,
Wang
,
Y.-Z.
, and
Wang
,
Y.-S.
,
2020
, “
Nonreciprocal Transmission of Nonlinear Elastic Wave Metamaterials by Incremental Harmonic Balance Method
,”
Int. J. Mech. Sci
,
173
, p.
105433
.
11.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectification
,”
Nat. Mater.
,
10
(
9
), pp.
665
668
.
12.
Nassar
,
H.
,
Yousefzadeh
,
B.
, and
Fleury
,
R.
,
2020
, “
Nonreciprocity in Acoustic and Elastic Materials
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
667
685
.
13.
Li
,
F.
,
Anzel
,
P.
,
Yang
,
J.
,
Kevrekidis
,
P. G.
, and
Daraio
,
C.
,
2014
, “
Granular Acoustic Switches and Logic Elements
,”
Nat. Commun.
,
5
(
1
), p.
5311
.
14.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
15.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2005
, “
Analytic Model of Phononic Crystals With Local Resonances
,”
Phys. Rev. B
,
71
(
1
), p.
014103
.
16.
Mei
,
J.
,
Liu
,
Z.
,
Wen
,
W.
, and
Sheng
,
P.
,
2006
, “
Effective Mass Density of Fluid-Solid Composites
,”
Phys. Rev. Lett
,
96
(
2
), p.
024301
.
17.
Mei
,
J.
,
Liu
,
Z.
,
Wen
,
W.
, and
Sheng
,
P.
,
2007
, “
Effective Dynamic Mass Density of Composites
,”
Phys. Rev. B
,
76
(
13
), p.
134205
.
18.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nat. Mater.
,
5
(
6
), pp.
452
456
.
19.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N. H.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett
,
101
(
20
), p.
204301
.
20.
Mei
,
J.
,
Ma
,
G.
,
Yang
,
M.
,
Yang
,
Z.
,
Wen
,
W.
, and
Sheng
,
P.
,
2012
, “
Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound
,”
Nat Commun
,
3
(
1
), pp.
756
.
21.
Zhou
,
W. J.
,
Li
,
X. P.
,
Wang
,
Y. S.
,
Chen
,
W. Q.
, and
Huang
,
G. L.
,
2018
, “
Spectro-Spatial Analysis of Wave Packet Propagation in Nonlinear Acoustic Metamaterials
,”
J. Sound Vib.
,
413
, pp.
250
269
.
22.
Bukhari
,
M.
, and
Barry
,
O.
,
2020
, “
Spectro-Spatial Analyses of a Nonlinear Metamaterial With Multiple Nonlinear Local Resonators
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1539
1560
.
23.
Wang
,
B.
,
Liu
,
J.
,
Soh
,
A. K.
, and
Liang
,
N.
,
2022
, “
On Band Gaps of Nonlocal Acoustic Lattice Metamaterials: A Robust Strain Gradient Model
,”
Appl. Math. Mech
,
43
(
1
), pp.
1
20
.
24.
Xu
,
X.
,
Barnhart
,
M. V.
,
Fang
,
X.
,
Wen
,
J.
,
Chen
,
Y.
, and
Huang
,
G.
,
2019
, “
A Nonlinear Dissipative Elastic Metamaterial for Broadband Wave Mitigation
,”
Int. J. Mech. Sci
,
164
, p.
105159
.
25.
Maznev
,
A. A.
, and
Every
,
A. G.
,
2009
, “
Surface Acoustic Waves With Negative Group Velocity in a Thin Film Structure on Silicon
,”
Appl. Phys. Lett
,
95
(
1
), p.
011903
.
26.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
Negative Refraction of Elastic Waves at the Deep-Subwavelength Scale in a Single-Phase Metamaterial
,”
Nat. Commun.
,
5
(
1
), pp.
5510
.
27.
Hou
,
Z.
,
Ni
,
H.
, and
Assouar
,
B.
,
2018
, “
PT-Symmetry for Elastic Negative Refraction
,”
Phys. Rev. Appl.
,
10
(
4
), p.
044071
.
28.
Bramhavar
,
S.
,
Prada
,
C.
,
Maznev
,
A. A.
,
Every
,
A.
,
Norris
,
T. B.
, and
Murray
,
T. W.
,
2011
, “
Negative Refraction and Focusing of Elastic Lamb Waves at an Interface
,”
Phys. Rev. B
,
83
(
1
), p.
014106
.
29.
Chen
,
Y.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2021
, “
Roton-Like Acoustical Dispersion Relations in 3D Metamaterials
,”
Nat. Commun.
,
12
(
1
), p.
3278
.
30.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
.
31.
Zhou
,
J.
,
Dou
,
L.
,
Wang
,
K.
,
Xu
,
D.
, and
Ouyang
,
H.
,
2019
, “
A Nonlinear Resonator With Inertial Amplification for Very Low-Frequency Flexural Wave Attenuations in Beams
,”
Nonlinear Dyn.
,
96
(
1
), pp.
647
665
.
32.
Zhao
,
F.
,
Ji
,
J.
,
Ye
,
K.
, and
Luo
,
Q.
,
2021
, “
An Innovative Quasi-Zero Stiffness Isolator With Three Pairs of Oblique Springs
,”
Int. J. Mech. Sci
,
192
, p.
106093
.
33.
Zhao
,
F.
,
Cao
,
S.
,
Luo
,
Q.
, and
Ji
,
J.
,
2022
, “
Enhanced Design of the Quasi-Zero Stiffness Vibration Isolator With Three Pairs of Oblique Springs: Theory and Experiment
,”
J. Vib. Control.
34.
Ding
,
H.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Vibration of a Slightly Curved Beam With Quasi-Zero-Stiffness Isolators
,”
Nonlinear Dyn.
,
95
(
3
), pp.
2367
2382
.
35.
Niu
,
M. Q.
, and
Chen
,
L. Q.
,
2022
, “
Optimization of a Quasi-Zero-Stiffness Isolator via Oblique Beams
,”
Adv. Appl. Nonlinear Dyn.
,
799
, pp.
394
408
.
36.
Arisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME. J. Vib. Acoust
,
132
(
3
), p.
031001
.
37.
Chakraborty
,
G.
, and
Mallik
,
A. K.
,
2001
, “
Dynamics of a Weakly Non-Linear Periodic Chain
,”
Int. J. Non Linear Mech.
,
36
(
2
), pp.
375
389
.
38.
Hussein
,
M. I.
, and
Khajehtourian
,
R.
,
2018
, “
Nonlinear Bloch Waves and Balance Between Hardening and Softening Dispersion
,”
Proc. R. Soc. A
,
474
(
2217
), p.
20180173
.
You do not currently have access to this content.