Abstract

In recent years, with the increasing demand for ocean exploration, deep-sea soft robots featuring better environmental adaptability, lighter weight, and less energy consumption relative to traditional robots have emerged. Considering that deep-sea soft robots usually contain components composed of dissimilar materials in the form of layered structures, interfacial delamination is likely to occur under extreme hydrostatic pressure, which may significantly impact robot operation. Moreover, traditional numerical methods to analyze interfacial delamination with J-integral have limitations in analyzing interfacial delamination in abyssal environments due to the hydrostatic pressure exerted on delaminated interfaces. To address this largely unexplored issue, this paper proposes a numerical method suitable for calculating the energy release rate for interfacial delamination in a film-substrate structure under hydrostatic pressure and systematically studies the factors influencing the energy release rate in deep-sea soft robots with dimensional analysis. It can be found that a larger elastic mismatch between the film and the substrate will lead to a larger driving force for interfacial delamination. The failsafe maps are also obtained based on the proposed calculation method, through which it can be observed very intuitively whether the structure with various material parameters has a tendency of interfacial delamination at different water depths.

References

1.
Petersen
,
S.
,
Krätschell
,
A.
,
Augustin
,
N.
,
Jamieson
,
J.
,
Hein
,
J. R.
, and
Hannington
,
M. D.
,
2016
, “
News From the Seabed—Geological Characteristics and Resource Potential of Deep-Sea Mineral Resources
,”
Marine Policy
,
70
, pp.
175
187
.
2.
Levin
,
L. A.
,
Bett
,
B. J.
,
Gates
,
A. R.
,
Heimbach
,
P.
,
Howe
,
B. M.
,
Janssen
,
F.
,
McCurdy
,
A.
, et al
,
2019
, “
Global Observing Needs in the Deep Ocean
,”
Front. Marine Sci.
,
6
, p.
241
.
3.
Kang
,
Y.
, and
Liu
,
S.
,
2021
, “
The Development History and Latest Progress of Deep-Sea Polymetallic Nodule Mining Technology
,”
Minerals
,
11
(
10
), p.
1132
.
4.
Dai
,
Y.
, and
Liu
,
S.
,
2013
, “
Researches on Deep Ocean Mining Robots: Status and Development
,”
Robot
,
35
(
3
), p.
363
.
5.
Błachut
,
J.
, and
Smith
,
P.
,
2008
, “
Buckling of Multi-segment Underwater Pressure Hull
,”
Ocean Eng.
,
35
(
2
), pp.
247
260
.
6.
Stachiw
,
J.
,
Peters
,
D.
, and
McDonald
,
G.
,
2006
, “Ceramic External Pressure Housings for Deep Sea Vehicles,”
OCEANS 2006
,
IEEE
,
Boston, MA
, pp.
1
7
. [2022-05-05].
7.
Kampmann
,
P.
,
Lemburg
,
J.
,
Hanff
,
H.
, and
Kirchner
,
F.
,
2012
, “Hybrid Pressure-Tolerant Electronics,”
2012 Oceans
,
IEEE
,
Hampton Roads, VA
, pp.
1
5
[2022-05-05].
8.
Umapathy
,
A.
,
Babu
,
S. M.
,
Vedachalam
,
N.
,
Venkatesan
,
K.
,
Kumar
,
N. K. S.
,
Gopakumar
,
K.
,
Ramadass
,
G. A.
, and
Atmanand
,
M. A.
,
2019
, “
Influence of Deep-Sea Ambient Conditions in the Performance of Pressure-Compensated Induction Motors
,”
Marine Technol. Soc. J.
,
53
(
1
), pp.
67
73
.
9.
Li
,
G.
,
Chen
,
X.
,
Zhou
,
F.
,
Liang
,
Y.
,
Xiao
,
Y.
,
Cao
,
X.
,
Zhang
,
Z.
, et al
,
2021
, “
Self-powered Soft Robot in the Mariana Trench
,”
Nature
,
591
(
7848
), pp.
66
71
.
10.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
, et al
,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
8
.
11.
Phillips
,
B. T.
,
Becker
,
K. P.
,
Kurumaya
,
S.
,
Galloway
,
K. C.
,
Whittredge
,
G.
,
Vogt
,
D. M.
,
Teeple
,
C. B.
, et al
,
2018
, “
A Dexterous, Glove-Based Teleoperable Low-Power Soft Robotic Arm for Delicate Deep-Sea Biological Exploration
,”
Sci. Rep.
,
8
(
1
), p.
14779
.
12.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Robot.
,
26
(
7
), pp.
709
727
.
13.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.
14.
Suo
,
Z.
, and
Hutchinson
,
J. W.
,
1990
, “
Interface Crack Between Two Elastic Layers
,”
Int. J. Fract.
,
43
(
1
), pp.
1
18
.
15.
Wang
,
C. H.
,
1997
, “
Fracture of Interface Cracks Under Combined Loading
,”
Eng. Fract. Mech.
,
56
(
1
), pp.
77
86
.
16.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “Mixed Mode Cracking in Layered Materials,”
Advances in Applied Mechanics
,
J.W.
Hutchinson
, and
T. Y.
Wu
, eds.,
Elsevier
,
New York
, pp.
63
191
. [2022-05-09].
17.
Shih
,
C. F.
,
1991
, “
Cracks on Bimaterial Interfaces: Elasticity and Plasticity Aspects
,”
Mater. Sci. Eng. A
,
143
(
1
), pp.
77
90
.
18.
Liu
,
X. H.
,
Lane
,
M. W.
,
Shaw
,
T. M.
, and
Simonyi
,
E.
,
2007
, “
Delamination in Patterned Films
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1706
1718
.
19.
Mei
,
H.
,
Gowrishankar
,
S.
,
Liechti
,
K. M.
, and
Huang
,
R.
,
2010
, “
Initiation and Propagation of Interfacial Selamination in Integrated Thin-Film Structures
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
,
June 2–5
, pp.
1
8
.
20.
Dodabalapur
,
A.
,
2006
, “
Organic and Polymer Transistors for Electronics
,”
Mater. Today
,
9
(
4
), pp.
24
30
.
21.
Jia
,
Z.
,
Tucker
,
M. B.
, and
Li
,
T.
,
2011
, “
Failure Mechanics of Organic–Inorganic Multilayer Permeation Barriers in Flexible Electronics
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
365
372
.
22.
Wagner
,
S.
,
Lacour S
,
P.
,
Jones
,
J.
,
Hsu
,
P. I.
,
Sturm
,
J. C.
,
Li
,
T.
, and
Suo
,
Z.
,
2004
, “
Electronic Skin: Architecture and Components
,”
Phys. E: Low-Dimensional Syst. Nanostruct.
,
25
(
2–3
), pp.
326
334
.
23.
Ho
,
P. S.
,
Wang
,
G.
,
Ding
,
M.
,
Zhao
,
J.-H.
, and
Dai
,
X.
,
2004
, “
Reliability Issues for Flip-Chip Packages
,”
Microelectron. Reliab.
,
44
(
5
), pp.
719
737
.
24.
Gao
,
H.
,
2006
, “
Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-Like Materials
,”
Int. J. Fract.
,
138
(
1–4
), pp.
101
137
.
25.
Nazir
,
M. H.
, and
Khan
,
Z. A.
,
2017
, “
A Review of Theoretical Analysis Techniques for Cracking and Corrosive Degradation of Film-Substrate Systems
,”
Eng. Failure Anal.
,
72
, pp.
80
113
.
26.
Yu
,
H. H.
,
He
,
M. Y.
, and
Hutchinson
,
J. W.
,
2001
, “
Edge Effects in Thin Film Delamination
,”
Acta Mater.
,
49
(
1
), pp.
93
107
.
27.
Cotterell
,
B.
, and
Chen
,
Z.
,
2000
, “
Buckling and Cracking of Thin Films on Compliant Substrates Under Compression
,”
Int. J. Fract.
,
104
, pp.
169
179
.
28.
Hayashi
,
K.
, and
Nemat-Nasser
,
S.
,
1981
, “
Energy-Release Rate and Crack Kinking Under Combined Loading
,”
ASME J. Appl. Mech.
,
48
(
3
), pp.
520
524
.
29.
Mei
,
H.
,
Pang
,
Y.
, and
Huang
,
R.
,
2007
, “
Influence of Interfacial Delamination on Channel Cracking of Elastic Thin Films
,”
Int. J. Fract.
,
148
(
4
), pp.
331
342
.
30.
Beuth
,
J. L.
,
1992
, “
Cracking of Thin Bonded Films in Residual Tension
,”
Int. J. Solids Struct.
,
29
(
13
), pp.
1657
1675
.
31.
Ye
,
T.
,
Suo
,
Z.
, and
Evans
,
A.
,
1992
, “
Thin-Film Cracking and the Roles of Substrate and Interface
,”
Int. J. Solids Struct.
,
29
(
21
), pp.
2639
2648
.
32.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
33.
Mott
,
P. H.
, and
Roland
,
C. M.
,
2009
, “
Limits to Poisson’s Ratio in Isotropic Materials
,”
Phys. Rev. B
,
80
(
13
), p.
132104
.
34.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
.
35.
Meng
,
Q.
,
Zaman
,
I.
,
Hannam
,
J. R.
,
Kapota
,
S.
,
Luong
,
L.
,
Youssf
,
O.
, and
Ma
,
J.
,
2011
, “
Improvement of Adhesive Toughness Measurement
,”
Polym. Test.
,
30
(
2
), pp.
243
250
.
You do not currently have access to this content.