Abstract

Strong adhesives often rely on reduced stress concentrations obtained via specific functional grading of material properties. This can be seen in many examples in nature and engineering. Basic design principles have been formulated based on parametric optimization, but a general design tool is still missing. We propose here the use of topology optimization to achieve optimal stiffness distribution in a multimaterial adhesive backing layer, reducing stress concentration at selected (crack tip) locations. The method involves the minimization of a linear combination of (i) the J-integral around the crack tip and (ii) the strain energy of the structure. This combination is due to the compromise between numerical stability and accuracy of the method, where (i) alone is numerically unstable and (ii) alone cannot eliminate the crack tip stress singularity. We analyze three cases in plane strain conditions, namely, (1) double-edged crack and (2) center crack, in tension, as well as (3) edge crack under shear. Each case evidences a different optimal topology with (1) and (2) providing similar results. The optimal topology allocates stiffness in regions that are far away from the crack tip, and the allocation of softer materials over stiffer ones produces a sophisticated structural hierarchy. To test our solutions, we plot the contact stress distribution across the interface. In all observed cases, we eliminate the stress singularity at the crack tip, albeit generating (mild) stress concentrations in other locations. The optimal topologies are tested to be independent of the crack size. Our method ultimately provides the robust design of flaw tolerant adhesives where the crack location is known.

References

1.
Peisker
,
H.
,
Michels
,
J.
, and
Gorb
,
S. N.
,
2013
, “
Evidence for a Material Gradient in the Adhesive Tarsal Setae of the Ladybird Beetle Coccinella septempunctata
,”
Nat. Commun.
,
4
(
1
), p.
1661
.
2.
Minsky
,
H. K.
, and
Turner
,
K. T.
,
2015
, “
Achieving Enhanced and Tunable Adhesion via Composite Posts
,”
Appl. Phys. Lett.
,
106
(
20
), p.
201604
.
3.
Fischer
,
S. C. L.
,
Arzt
,
E.
, and
Hensel
,
R.
,
2017
, “
Composite Pillars With a Tunable Interface for Adhesion to Rough Substrates
,”
ACS Appl. Mater. Interfaces
,
9
(
1
), pp.
1036
1044
.
4.
Heepe
,
L.
,
Höft
,
S.
,
Michels
,
J.
, and
Gorb
,
S. N.
,
2018
, “
Material Gradients in Fibrillar Insect Attachment Systems: The Role of Joint-Like Elements
,”
Soft Matter
,
14
(
34
), pp.
7026
7033
.
5.
Kumar
,
S.
,
Wardle
,
B. L.
,
Arif
,
M. F.
, and
Ubaid
,
J.
,
2018
, “
Stress Reduction of 3D Printed Compliance-Tailored Multilayers
,”
Adv. Eng. Mater.
,
20
(
1
), p.
1700883
.
6.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
C. Y.
, and
Kim
,
J.
,
2004
, “
Design of Biomimetic Fibrillar Interfaces: 1. Making Contact
,”
J. Royal Soc. Interface
,
1
(
1
), p.
23
33
.
7.
Gao
,
H.
,
Wang
,
X.
,
Yao
,
H.
,
Gorb
,
S.
, and
Arzt
,
E.
,
2005
, “
Mechanics of Hierarchical Adhesion Structures of Geckos
,”
Mech. Mater.
,
37
(
2–3
), pp.
275
285
.
8.
Del Campo
,
A.
,
Greiner
,
C.
, and
Arzt
,
E.
,
2007
, “
Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces
,”
Langmuir
,
23
(
20
), pp.
10235
10243
.
9.
Spuskanyuk
,
A. V.
,
McMeeking
,
R. M.
,
Deshpande
,
V. S.
, and
Arzt
,
E.
,
2008
, “
The Effect of Shape on the Adhesion of Fibrillar Surfaces
,”
Acta Biomater.
,
4
(
6
), pp.
1669
1676
.
10.
Carbone
,
G.
,
Pierro
,
E.
, and
Gorb
,
S. N.
,
2011
, “
Origin of the Superior Adhesive Performance of Mushroom-Shaped Microstructured Surfaces
,”
Soft Matter
,
7
(
12
), pp.
5545
5552
.
11.
Hossfeld
,
C. K.
,
Schneider
,
A. S.
,
Arzt
,
E.
, and
Frick
,
C. P.
,
2013
, “
Detachment Behavior of Mushroom-Shaped Fibrillar Adhesive Surfaces in Peel Testing
,”
Langmuir
,
29
(
49
), pp.
15394
15404
.
12.
Marvi
,
H.
,
Song
,
S.
, and
Sitti
,
M.
,
2015
, “
Experimental Investigation of Optimal Adhesion of Mushroomlike Elastomer Microfibrillar Adhesives
,”
Langmuir
,
31
(
37
), pp.
10119
10124
.
13.
Carbone
,
G.
, and
Pierro
,
E.
,
2012
, “
Sticky Bio-Inspired Micropillars: Finding the Best Shape
,”
Small
,
8
(
9
), pp.
1449
1454
.
14.
Aksak
,
B.
,
Sahin
,
K.
, and
Sitti
,
M.
,
2014
, “
The Optimal Shape of Elastomer Mushroom-Like Fibers for High and Robust Adhesion
,”
Beilstein J. Nanotechnol.
,
5
(
1
), pp.
630
638
.
15.
Micciché
,
M.
,
Arzt
,
E.
, and
Kroner
,
E.
,
2014
, “
Single Macroscopic Pillars as Model System for Bioinspired Adhesives: Influence of Tip Dimension, Aspect Ratio, and Tilt Angle
,”
ACS Appl. Mater. Interfaces
,
6
(
10
), pp.
7076
7083
.
16.
Kim
,
Y.
,
Yang
,
C.
,
Kim
,
Y.
,
Gu
,
G. X.
, and
Ryu
,
S.
,
2020
, “
Designing an Adhesive Pillar Shape With Deep Learning-Based Optimization
,”
ACS Appl. Mater. Interfaces
,
12
(
21
), pp.
24458
24465
.
17.
Son
,
D.
,
Liimatainen
,
V.
, and
Sitti
,
M.
,
2021
, “
Machine Learning-Based and Experimentally Validated Optimal Adhesive Fibril Designs
,”
Small
,
17
(
39
), p.
2102867
.
18.
Kong
,
A.
, and
Bacca
,
M.
,
2022
, “
A Self-Adhesion Criterion for Slanted Micropillars
,”
Extreme Mech. Lett.
,
52
, p.
101663
.
19.
Balijepalli
,
R. G.
,
Fischer
,
S. C.
,
Hensel
,
R.
,
McMeeking
,
R. M.
, and
Arzt
,
E.
,
2017
, “
Numerical Study of Adhesion Enhancement by Composite Fibrils With Soft Tip Layers
,”
J. Mech. Phys. Solids
,
99
, pp.
357
378
.
20.
Benvidi
,
F. H.
, and
Bacca
,
M.
,
2021
, “
Theoretical Limits in Detachment Strength for Axisymmetric Bi-Material Adhesives
,”
ASME J. Appl. Mech.
,
88
(
12
), p.
121007
.
21.
Luo
,
A.
, and
Turner
,
K. T.
,
2021
, “
Achieving Enhanced Adhesion Through Optimal Stress Distributions
,”
J. Mech. Phys. Solids
,
156
, p.
104610
.
22.
Luo
,
A.
,
Zhang
,
H.
, and
Turner
,
K. T.
,
2022
, “
Machine Learning-Based Optimization of the Design of Composite Pillars for Dry Adhesives
,”
Extreme Mech. Lett.
,
54
, p.
101695
.
23.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
24.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9
), pp.
635
654
.
25.
Chaperon
,
P.
,
Jones
,
R.
,
Heller
,
M.
,
Pitt
,
S.
, and
Rose
,
F.
,
2000
, “
A Methodology for Structural Optimisation With Damage Tolerance Constraints
,”
Eng. Fail. Anal.
,
7
(
4
), pp.
281
300
.
26.
Challis
,
V. J.
,
Roberts
,
A. P.
, and
Wilkins
,
A. H.
,
2008
, “
Fracture Resistance via Topology Optimization
,”
Struct. Multidiscip. Optim.
,
36
(
3
), pp.
263
271
.
27.
Banh
,
T. T.
,
Luu
,
N. G.
, and
Lee
,
D.
,
2021
, “
A Non-Homogeneous Multi-Material Topology Optimization Approach for Functionally Graded Structures With Cracks
,”
Compos. Struct.
,
273
, p.
114230
.
28.
Russ
,
J. B.
, and
Waisman
,
H.
,
2019
, “
Topology Optimization for Brittle Fracture Resistance
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
238
263
.
29.
Russ
,
J. B.
, and
Waisman
,
H.
,
2020
, “
A Novel Topology Optimization Formulation for Enhancing Fracture Resistance With a Single Quasi-Brittle Material
,”
Int. J. Numer. Methods Eng.
,
121
(
13
), pp.
2827
2856
.
30.
Xia
,
L.
,
Da
,
D.
, and
Yvonnet
,
J.
,
2018
, “
Topology Optimization for Maximizing the Fracture Resistance of Quasi-Brittle Composites
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
234
254
.
31.
Sylves
,
K.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Adhesive Surface Design Using Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
38
(
5
), pp.
455
468
.
32.
Ejaz
,
H.
,
Mubashar
,
A.
,
Ashcroft
,
I. A.
,
Uddin
,
E.
, and
Khan
,
M.
,
2018
, “
Topology Optimisation of Adhesive Joints Using Non-Parametric Methods
,”
Int. J. Adhes. Adhes.
,
81
, pp.
1
10
.
33.
Duysinx
,
P.
, and
Bendsøe
,
M. P.
,
1998
, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
43
(
8
), pp.
1453
1478
.
34.
Cheng
,
G.
, and
Jiang
,
Z.
,
1992
, “
Study on Topology Optimization With Stress Constraints
,”
Eng. Optim.
,
20
(
2
), pp.
129
148
.
35.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscipl. Optim.
,
41
(
4
), pp.
605
620
.
36.
Niu
,
C.
,
Zhang
,
W.
, and
Gao
,
T.
,
2019
, “
Topology Optimization of Continuum Structures for the Uniformity of Contact Pressures
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
185
210
.
37.
Kang
,
Z.
,
Liu
,
P.
, and
Li
,
M.
,
2017
, “
Topology Optimization Considering Fracture Mechanics Behaviors at Specified Locations
,”
Struct. Multidiscipl. Optim.
,
55
(
5
), pp.
1847
1864
.
38.
Leronni
,
A.
, and
Fleck
,
N. A.
,
2022
, “
Delamination of a Sandwich Layer by Diffusion of a Corrosive Species: Initiation of Growth
,”
J. Mech. Phys. Solids
,
160
, p.
104775
.
39.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
40.
Bacca
,
M.
,
Booth
,
J. A.
,
Turner
,
K.
, and
McMeeking
,
R. M.
,
2016
, “
Load Sharing in Bioinspired Fibrillar Adhesives With Backing Layer Interactions and Interfacial Misalignment
,”
J. Mech. Phys. Solids
,
96
, pp.
428
444
.
41.
Khungura
,
H.
, and
Bacca
,
M.
,
2020
, “
Optimal Load Sharing in Bioinspired Fibrillar Adhesives: Asymptotic Solution
,”
ASME J. Appl. Mech.
,
88
(
3
), p.
031004
.
You do not currently have access to this content.