Abstract

The foam sandwich tube contains inner and outer tubes and filling foam. The foam sandwich tube is widely used in engineering, due to its lightweight, high specific strength, energy absorption, and other excellent characteristics. In this paper, the free inversion of the circular metal foam sandwich tube (CMFST) under axial loading is studied analytically and numerically. The plastic deformation occurs in the CMFST, and its main deformation modes include circumferential expansion, radial bending of the CMFST, and compression of the metal sandwich foam. An analytical model for the free inversion of the CMFST under axial loading is established, considering metal tube expansion, the radial bending of metal circular tube wall, and metal foam compression. The commercial abaqus software is adopted to numerically study the free inversion behavior of the CMFST. The analytical predictions agree well with the numerical ones. It is shown that the specific energy absorption (SEA) of the CMFST under free inversion is significantly better than the empty tube. When the non-dimensional foam strength is 0.05, the SEA of the CMFST under free inversion is 107.68% higher than the empty tube. Thus, the metal foam sandwich tube under free inversion is an excellent energy-absorbing device.

References

1.
Xu
,
F. X.
,
Zhang
,
X.
, and
Zhang
,
H.
,
2018
, “
A Review on Functionally Graded Structures and Materials for Energy Absorption
,”
Eng. Struct.
,
171
(
15
), pp.
309
325
.
2.
Alkhatib
,
S. E.
,
Tarlochan
,
F.
, and
Eyvazian
,
A.
,
2017
, “
Collapse Behavior of Thin-Walled Corrugated Tapered Tubes
,”
Eng. Struct.
,
150
(
1
), pp.
674
692
.
3.
Fan
,
Z.
,
Lu
,
G.
, and
Liu
,
K.
,
2013
, “
Quasi-Static Axial Compression of Thin-Walled Tubes With Different Cross-Sectional Shapes
,”
Eng. Struct.
,
55
, pp.
80
89
.
4.
Gong
,
S. F.
,
Wang
,
X. P.
,
Zhang
,
T.
, and
Liu
,
C. B.
,
2018
, “
Buckle Propagation of Sandwich Pipes Under External Pressure
,”
Eng. Struct.
,
175
(
15
), pp.
339
354
.
5.
Mansor
,
M. A.
,
Ahmad
,
Z.
, and
Abdullah
,
M. R.
,
2022
, “
Crashworthiness Capability of Thin-Walled Fibre Metal Laminate Tubes Under Axial Crushing
,”
Eng. Struct.
,
252
(
1
), p.
113660
.
6.
Turner
,
S. E.
, and
Ambrico
,
J. M.
,
2013
, “
Underwater Implosion of Cylindrical Metal Tubes
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011013
.
7.
Bodlani
,
S. B.
,
Yuen
,
S. C. K.
, and
Nurick
,
G. N.
,
2009
, “
The Energy Absorption Characteristics of Square Mild Steel Tubes With Multiple Induced Circular Hole Discontinuities-Part I: Experiments
,”
ASME J. Appl. Mech.
,
76
(
4
), p.
041012
.
8.
Bodlani
,
S. B.
,
Yuen
,
S. C. K.
, and
Nurick
,
G. N.
,
2009
, “
The Energy Absorption Characteristics of Square Mild Steel Tubes With Multiple Induced Circular Hole Discontinuities-Part II: Numerical Simulations
,”
ASME J. Appl. Mech.
,
76
(
4
), p.
041013
.
9.
Jiao
,
R.
, and
Kyriakides
,
S.
,
2010
, “
Wrinkling of Tubes by Axial Cycling
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
031012
.
10.
Abdul-Latif
,
A.
, and
Baleh
,
R.
,
2008
, “
Dynamic Biaxial Plastic Buckling of Circular Shells
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031013
.
11.
Belica
,
T.
,
Malinowski
,
M.
, and
Magnucki
,
K.
,
2012
, “
Dynamic Stability of an Isotropic Metal Foam Cylindrical Shell Subjected to External Pressure and Axial Compression
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041003
.
12.
Liu
,
Y. Z.
,
Xiong
,
F.
,
Yang
,
K. J.
, and
Chen
,
Y. L.
,
2020
, “
A Novel Omnidirectional Self-Locked Energy Absorption System Inspired by Windmill
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
085001
.
13.
Reid
,
S. R.
, and
Harrigan
,
J. J.
,
1998
, “
Transient Effects in the Quasi-Static and Dynamic Internal Inversion and Nosing of Metal Tubes
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
263
280
.
14.
Colokoglu
,
A.
, and
Reddy
,
T. Y.
,
1996
, “
Strain Rate and Inertial Effects in Free External Inversion of Tubes
,”
Int. J. Crashworthiness
,
1
(
1
), pp.
93
106
.
15.
Miscow
,
F. P. C.
, and
Al-Qureshi
,
H. A.
,
1997
, “
Mechanics of Static and Dynamic Inversion Processes
,”
Int. J. Mech. Sci.
,
39
(
2
), pp.
147
161
.
16.
Magrinho
,
J. P.
,
Centeno
,
G.
,
Silva
,
M. B.
,
Vallellano
,
C.
, and
Martins
,
P. A. F.
,
2019
, “
On the Formability Limits of Thin-Walled Tube Inversion Using Different Die Fillet Radii
,”
Thin-Walled Struct.
,
144
, p.
106328
.
17.
Sekhon
,
G. S.
,
Gupta
,
N. K.
, and
Gupta
,
P. K.
,
2003
, “
An Analysis of External Inversion of Round Tubes
,”
J. Mater. Process. Technol.
,
133
(
3
), pp.
243
256
.
18.
Li
,
Y.
, and
You
,
Z.
,
2018
, “
External Inversion of Thin-Walled Corrugated Tubes
,”
Int. J. Mech. Sci.
,
144
, pp.
54
66
.
19.
Sahu
,
R. R.
, and
Gupta
,
P. K.
,
2015
, “
Studies on Geometrical Metallic Frusta for Inward Inversion by Finite Element Simulation
,”
Int. J. Comput. Aided Eng. Technol.
,
7
(
4
), pp.
516
535
.
20.
Mohammadiha
,
O.
, and
Ghariblu
,
H.
,
2017
, “
Theoretical Analysis of Functionally Graded Thickness Tubes Under Dynamic External Inversion Loading
,”
Int. J. Impact Eng.
,
110
, pp.
162
170
.
21.
Guo
,
D.
,
Fang
,
C. Q.
,
Wang
,
X.
, and
Lu
,
G.
,
2017
, “
Dynamic Inversion Characteristics of Composite Reinforced Tubes
,”
Eur. J. Mech. A Solids
,
63
, pp.
53
67
.
22.
Huang
,
K. L.
,
Ye
,
H. T.
,
Yu
,
Z. F.
, and
Zhou
,
X.
,
2022
, “
Energy Absorption Properties of Composite Sandwich Tubes With Pre-Folded Cores
,”
Compos. Struct.
,
294
(
15
), p.
115737
.
23.
Zhang
,
Z. H.
,
Liu
,
S. T.
, and
Tang
,
Z. L.
,
2011
, “
Comparisons of Honeycomb Sandwich and Foam-Filled Cylindrical Columns Under Axial Crushing Loads
,”
Thin-Walled Struct.
,
49
(
9
), pp.
1071
1079
.
24.
Chen
,
L.
,
Pan
,
D. Y.
,
Zhao
,
Q. L.
,
Chen
,
L.
,
Niu
,
L. L.
,
Cong
,
L.
, and
Li
,
C. T.
,
2021
, “
Overall Buckling Characteristics of Slender FRP-Foam Sandwich Tube Under Axial Compression
,”
Compos. Commun.
,
24
, p.
100585
.
25.
Zhang
,
J. X.
,
Ye
,
Y.
,
Zhu
,
Y. Q.
,
Yuan
,
H.
,
Qin
,
Q. H.
, and
Wang
,
T. J.
,
2020
, “
On Axial Splitting and Curling Behaviour of Circular Sandwich Metal Tubes With Metal Foam Core
,”
Int. J. Solids Struct.
,
202
(
1
), pp.
111
125
.
26.
Jin
,
Q.
,
Wang
,
J.
,
Chen
,
J. Y.
, and
Bao
,
F. L.
,
2022
, “
Axial Compressive Behavior and Energy Absorption of Syntactic Foam-Filled GFRP Tubes With Lattice Frame Reinforcement
,”
Compos. Struct.
,
299
(
1
), p.
116080
.
27.
Yang
,
C. X.
,
Chen
,
Z. F.
,
Yao
,
S. G.
,
Xu
,
P.
,
Li
,
S. F.
, and
Alqahtani
,
M. S.
,
2022
, “
Quasi-Static and Low-Velocity Axial Crushing of Polyurethane Foam-Filled Aluminium/CFRP Composite Tubes: An Experimental Study
,”
Compos. Struct.
,
299
(
1
), p.
116083
.
28.
Tomlinson
,
D.
, and
Fam
,
A.
,
2020
, “
Axial Response of Flax Fibre Reinforced Polymer-Skinned Tubes With Lightweight Foam Cores and Bioresin Blend
,”
Thin-Walled Struct.
,
155
, p.
106923
.
29.
Faraz
,
M. R.
,
Ahmadi
,
H.
,
Liaghat
,
G.
,
Vahid
,
S.
,
Razmkhah
,
O.
, and
Tarafdar
,
A.
,
2022
, “
Energy Absorption Assessment of Bio-Mimicked Hybrid Al/PP Sandwich Tube: Experimental and Numerical Investigation
,”
Thin-Walled Struct.
,
181
, p.
110116
.
30.
Su
,
M. M.
,
Wang
,
H.
, and
Hao
,
H.
,
2019
, “
Axial and Radial Compressive Properties of Alumina-Aluminum Matrix Syntactic Foam Filled Thin-Walled Tubes
,”
Compos. Struct.
,
226
(
15
), p.
111197
.
31.
LeRoy
,
R. G.
, and
Donald
,
P. M.
,
1966
, “
Prediction of the Inversion Load of a Circular Tube
,” NASA Technical Note, NASA TN D-3622.
32.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
You do not currently have access to this content.