Abstract

In this work, a new original justification of an homogenized model for ionic diffusion in porous media is proposed. The approach used enables to specify clearly the domain of validity of this homogenized model, involving a source term characterizing the electrical double layer effect at the macroscale. This homogenized model is obtained from the formal periodic homogenization of a Nernst–Planck–Poisson system at the pore scale accounting for conductivity of the solid phase which is generally neglected. The Poisson equation is defined in both fluid and solid phases and the discontinuity of fluxes at the solid–fluid interface is modeled by a jump of the electrical field, linked to the surface electrical charge of the solid interface. Numerical simulations are carried out at the scale of the unit cell to underscore the influence of the contrast on the electrical permittivity between fluid and solid phases. The comparison of the concentrations and the electrical potential given at the macroscale by the homogenized model and by a direct pore scale model reveals the accuracy of the homogenized model which is very simple to use.

References

1.
Nanukuttan
,
S.
,
Basheer
,
P.
,
McCarter
,
W.
,
Tang
,
L.
,
Holmes
,
N.
,
Chrisp
,
T.
,
Starrs
,
G.
, and
Magee
,
B.
,
2015
, “
The Performance of Concrete Exposed to Marine Environments: Predictive Modelling and Use of Laboratory/On Site Test Methods
,”
Constr. Build. Mater.
,
93
, pp.
831
840
.
2.
Valipour
,
M.
,
Pargar
,
F.
,
Shekarchi
,
M.
,
Khani
,
S.
, and
Moradian
,
M.
,
2013
, “
In Situ Study of Chloride Ingress in Concretes Containing Natural Zeolite, Metakaolin and Silica Fume Exposed to Various Exposure Conditions in a Harsh Marine Environment
,”
Constr. Build. Mater.
,
46
, pp.
63
70
.
3.
Kim
,
J.
,
McCarter
,
W.
,
Suryanto
,
B.
,
Nanukuttan
,
S.
,
Basheer
,
P.
, and
Chrisp
,
T.
,
2016
, “
Chloride Ingress Into Marine Exposed Concrete: A Comparison of Empirical- and Physically-Based Models
,”
Cem. Concr. Compos.
,
72
, pp.
133
145
.
4.
Bourbatache
,
K.
,
Millet
,
O.
,
Aït-Mokhtar
,
A.
, and
Amiri
,
O.
,
2012
, “
Modeling the Chlorides Transport in Cementitious Materials by Periodic Homogenization
,”
Transp. Porous Media
,
94
, pp.
437
459
.
5.
Millet
,
O.
,
Aït-Mokhtar
,
A.
, and
Amiri
,
O.
,
2008
, “
Determination of the Macroscopic Chloride Diffusivity in Cementitious Porous Materials by Coupling Periodic Homogenization of Nernst–Planck Equation With Experimental Protocol
,”
Int. J. Multiphys.
,
2
(
17
), pp.
129
145
.
6.
Bourbatache
,
K.
,
Millet
,
O.
, and
Aït-Mokhtart
,
A.
,
2012
, “
Ionic Transfer in Charged Porous Media. Periodic Homogenization and Parametric Study on 2d Microstructures
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5979
5991
.
7.
Scheiner
,
S.
,
Pivonka
,
P.
, and
Smith
,
D. W.
,
2013
, “
Electro-Diffusive Transport in Macroscopic Porous Media: Estimation of Effective Transport Properties Using Numerical Upscaling
,”
Comput. Geotech.
,
48
, pp.
283
292
.
8.
Samson
,
E.
,
Marchand
,
J.
, and
Beaudoin
,
J. J.
,
1999
, “
Describing Ion Diffusion Mechanisms in Cement-Based Materials Using the Homogenization Technique
,”
Cem. Concr. Res.
,
29
(
8
), pp.
1341
1345
.
9.
Bourbatache
,
M. K.
,
Millet
,
O.
, and
Moyne
,
C.
,
2020
, “
Upscaling Diffusion–Reaction in Porous Media
,”
Acta Mech.
,
231
(
Feb.
), pp.
2011
2031
.
10.
Sanchez Palencia
,
E.
,
1980
,
Non Homogeneous Media and Vibration Theory
,
Springer
,
Berlin/Heidelberg
.
11.
Auriault
,
J.-L.
, and
Lewandowska
,
J.
,
1996
, “
Diffusion/Adsorption/Advection Macrotransport in Soils
,”
Eur. J. Mech.
,
15
(
4
), pp.
681
704
.
12.
Moyne
,
C.
, and
Murad
,
M.
,
2006
, “
A Two-Scale Model for Coupled Electro-chemo-mechanical Phenomena and Onsagers Reciprocity Relations in Expansive Clays: I Homogenization Analysis
,”
Transp. Porous Media
,
62
(
3
), pp.
333
380
.
13.
Allaire
,
G.
,
Brizzi
,
R.
,
Mikelic
,
A.
, and
Piatnitski
,
A.
,
2010
, “
Two-Scale Expansion With Drift Approach to the Taylor Dispersion for Reactive Transport Through Porous Media
,”
Chem. Eng. Sci.
,
65
(
7
), pp.
2292
2300
(
International Symposium on Mathematics in Chemical Kinetics and Engineering
).
14.
Hornung
,
U.
,
1997
,
Homogenization and Porous Media
,
IAM
,
Springer New York
.
15.
Blancher
,
S.
,
Creff
,
R.
,
Gagneux
,
G.
,
Lacabanne
,
B.
,
Montel
,
F.
, and
Trujillo
,
D.
,
2001
, “
Multicomponent Flow in a Porous Medium. Adsorption and Soret Effect Phenomena: Local Study and Upscaling Process
,”
ESAIM: M2AN
,
35
(
3
), pp.
481
512
.
16.
Gagneux
,
G.
, and
Millet
,
O.
,
2014
, “
Homogenization of the Nernst–Planck–Poisson System by Two-Scale Convergence
,”
J. Elast.
,
114
(
1
), pp.
69
84
.
17.
Looker
,
J. R.
, and
Carnie
,
S. L.
,
2006
, “
Homogenization of the Ionic Transport Equations in Periodic Porous Media
,”
Transp. Porous Media
,
65
(
1
), pp.
107
131
.
18.
Timofte
,
C.
,
2013
, “
Multiscale Analysis of Ionic Transport in Periodic Charged Media
,”
Biomath
,
2
(
2
), pp.
1
5
.
19.
Timofte
,
C.
,
2014
, “
Homogenization Results for Ionic Transport in Periodic Porous Media
,”
Comput. Math. Appl.
,
68
(
9
), pp.
1024
1031
(Biomath 2013).
20.
Ray
,
N.
,
Muntean
,
A.
, and
Knabner
,
P.
,
2012
, “
Rigorous Homogenization of a Stokes–Nernst–Planck–Poisson System
,”
J. Math. Anal. Appl.
,
390
(
1
), pp.
374
393
.
21.
Schmuck
,
M.
, and
Bazant
,
M. Z.
,
2015
, “
Homogenization of the Poisson–Nernst–Planck Equations for Ion Transport in Charged Porous Media
,”
SIAM J. Appl. Math.
,
75
(
3
), pp.
1369
1401
.
22.
Turjanicová
,
J.
,
Rohan
,
E.
, and
Lukeš
,
V.
,
2019
, “
Homogenization Based Two-Scale Modelling of Ionic Transport in Fluid Saturated Deformable Porous Media
,”
Comput. Math. Appl.
,
78
(
9
), pp.
3211
3235
(Applications of Partial Differential Equations in Science and Engineering).
23.
Allaire
,
G.
,
Brizzi
,
R.
,
Dufrêche
,
J.-F.
,
Mikelić
,
A.
, and
Piatnitski
,
A.
,
2013
, “
Ion Transport in Porous Media: Derivation of the Macroscopic Equations Using Upscaling and Properties of the Effective Coefficients
,”
Comput. Geosci.
,
17
(
3
), pp.
479
495
.
24.
Bhattacharya
,
A.
,
Gahn
,
M.
, and
Neuss-Radu
,
M.
,
2022
, “
Homogenization of a Nonlinear Drift–Diffusion System for Multiple Charged Species in a Porous Medium
,”
Nonlinear Anal.: Real World Appl.
,
68
, p.
103651
.
25.
Bourbatache
,
K.
,
Millet
,
O.
, and
Aït-Mokhtar
,
A.
,
2016
, “
Multi-scale Periodic Homogenization of Ionic Transfer in Cementitious Materials
,”
Heat Mass Transfer
,
52
(
8
), pp.
1489
1499
.
26.
Bourbatache
,
K.
,
Millet
,
O.
,
Aït-Mokhtar
,
A.
, and
Amiri
,
O.
,
2013
, “
Chloride Transfer in Cement-Based Materials. Part 1. Theoretical Basis and Modelling
,”
Int. J. Numer. Anal. Methods Geomechan.
,
37
(
11
), pp.
1614
1627
.
27.
Makul
,
N.
,
2013
, “
Dielectric Permittivity of Various Cement-Based Materials During the First 24 Hours Hydration
,”
Open J. Inorg. Non-metal. Mater.
,
3
(
4
), pp.
53
57
.
28.
Moyne
,
C.
, and
Murad
,
M. A.
,
2002
, “
Electro-Chemo-Mechanical Couplings in Swelling Clays Derived From a Micro/Macro-Homogenization Procedure
,”
Int. J. Solids Struct.
,
39
(
25
), pp.
6159
6190
.
29.
Bourbatache
,
K.
,
Millet
,
O.
,
Aït-Mokhtar
,
A.
, and
Amiri
,
O.
,
2013
, “
Chloride Transfer in Cement-Based Materials. Part 2. Experimental Study and Numerical Simulations
,”
Int. J. Numer. Anal. Methods Geomechan.
,
37
(
11
), pp.
1628
1641
.
You do not currently have access to this content.