Abstract

Insertion of a microprobe into the brain is challenging because it needs to have a minimum stiffness to be successfully implanted and a maximum softness to exhibit compliance with surrounding neural tissue during operation. A microprobe’s critical buckling force not only dictates the microprobe resistance to buckling during insertion but also reveals the corresponding compliance during operation. The methods that are currently used to insert flexible microprobes into the brain are far from perfect because they may adversely affect the microprobe intrinsic softness. In this article, a piezoelectric-based mechanism is presented, theoretically modeled, and simulated to precisely adjust the critical buckling force of a polyimide microprobe during insertion into the brain. Two parallel piezoelectric layers are extended along the length of a polyimide microprobe and connected to a voltage source. Based on analytical modeling and simulation results, placing the piezoelectric layers closer to the neutral axis of the structure leads to a microprobe with higher buckling capacity and greater compliance during insertion and operation, respectively. Depending on the applied voltage and the configurations of the microprobe and piezoelectric layers, the critical buckling force of the modified polyimide microprobe can be adjusted from less than 0.02 mN to higher than the minimum brain penetration force of 0.5 mN, compared to a fixed critical buckling force of a polyimide microprobe without the piezoelectric layer.

References

1.
Lozano
,
A. M.
,
Lipsman
,
N.
,
Bergman
,
H.
,
Brown
,
P.
,
Chabardes
,
S.
,
Chang
,
J. W.
,
Matthews
,
K.
, et al
,
2019
, “
Deep Brain Stimulation: Current Challenges and Future Directions
,”
Nat. Rev. Neurol.
,
15
(
3
), pp.
148
160
.
2.
Rivnay
,
J.
,
Wang
,
H.
,
Fenno
,
L.
,
Deisseroth
,
K.
, and
Malliaras
,
G. G.
,
2017
, “
Next-Generation Probes, Particles, and Proteins for Neural Interfacing
,”
Sci. Adv.
,
3
(
6
), p.
e1601649
.
3.
Tóth
,
E.
,
Fabó
,
D.
,
Entz
,
L.
,
Ulbert
,
I.
, and
Erőss
,
L.
,
2016
, “
Intracranial Neuronal Ensemble Recordings and Analysis in Epilepsy
,”
J. Neurosci. Methods
,
260
, pp.
261
269
.
4.
Jorfi
,
M.
,
Skousen
,
J. L.
,
Weder
,
C.
, and
Capadona
,
J. R.
,
2015
, “
Progress Towards Biocompatible Intracortical Microelectrodes for Neural Interfacing Applications
,”
J. Neural. Eng.
,
12
(
1
), p.
011001
.
5.
Potter
,
K. A.
,
Buck
,
A. C.
,
Self
,
W. K.
, and
Capadona
,
J. R.
,
2012
, “
Stab Injury and Device Implantation Within the Brain Results in Inversely Multiphasic Neuroinflammatory and Neurodegenerative Responses
,”
J. Neural. Eng.
,
9
(
4
), p.
046020
.
6.
Sridharan
,
A.
,
Muthuswamy
,
J.
, and
Rajan
,
S. D.
,
2013
, “
Long-Term Changes in the Material Properties of Brain Tissue at the Implant-Tissue Interface
,”
J. Neural. Eng.
,
10
(
6
), p.
066001
.
7.
Muthuswamy
,
J.
,
Saha
,
R.
, and
Gilletti
,
A.
, “
Tissue Micromotion Induced Stress Around Brain Implants
,”
2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology
,
Oahu, HI
,
May 12–15
, pp.
102
103
.
8.
Fiáth
,
R.
,
Márton
,
A. L.
,
Mátyás
,
F.
,
Pinke
,
D.
,
Márton
,
G.
,
Tóth
,
K.
, and
Ulbert
,
I.
,
2019
, “
Slow Insertion of Silicon Probes Improves the Quality of Acute Neuronal Recordings
,”
Sci. Rep.
,
9
(
1
), p.
111
.
9.
Britt
,
R. H.
, and
Rossi
,
G. T.
,
1982
, “
Quantitative Analysis of Methods for Reducing Physiological Brain Pulsations
,”
J. Neurosci. Methods
,
6
(
3
), pp.
219
229
.
10.
Muthuswamy
,
J.
,
Gilletti
,
A.
,
Jain
,
T.
, and
Okandan
,
M.
, “
Microactuated Neural Probes to Compensate for Brain Micromotion
,”
Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Cancun, Mexico
,
Sept. 17–21
, Vol.
1942
, pp.
1941
1943
.
11.
Goldstein
,
S. R.
, and
Salcman
,
M.
,
1973
, “
Mechanical Factors in the Design of Chronic Recording Intracortical Microelectrodes
,”
IEEE. Trans. Biomed. Eng.
,
20
(
4
), pp.
260
269
.
12.
Fee
,
M. S.
,
2000
, “
Active Stabilization of Electrodes for Intracellular Recording in Awake Behaving Animals
,”
Neuron
,
27
(
3
), pp.
461
468
.
13.
Sharafkhani
,
N.
,
Kouzani
,
A. Z.
,
Adams
,
S. D.
,
Long
,
J. M.
,
Lissorgues
,
G.
,
Rousseau
,
L.
, and
Orwa
,
J. O.
,
2022
, “
Neural Tissue-Microelectrode Interaction: Brain Micromotion, Electrical Impedance, and Flexible Microelectrode Insertion
,”
J. Neurosci. Methods
,
365
, p.
109388
.
14.
Luan
,
L.
,
Wei
,
X.
,
Zhao
,
Z.
,
Siegel
,
J. J.
,
Potnis
,
O.
,
Tuppen
,
C. A.
,
Lin
,
S.
, et al
,
2017
, “
Ultraflexible Nanoelectronic Probes Form Reliable, Glial Scar–Free Neural Integration
,”
Sci. Adv.
,
3
(
2
), p.
e1601966
.
15.
Patel
,
P. R.
,
Zhang
,
H.
,
Robbins
,
M. T.
,
Nofar
,
J. B.
,
Marshall
,
S. P.
,
Kobylarek
,
M. J.
,
Kozai
,
T. D.
,
Kotov
,
N. A.
, and
Chestek
,
C. A.
,
2016
, “
Chronic In Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays
,”
J. Neural. Eng.
,
13
(
6
), p.
066002
.
16.
Kozai
,
T. D. Y.
,
Langhals
,
N. B.
,
Patel
,
P. R.
,
Deng
,
X.
,
Zhang
,
H.
,
Smith
,
K. L.
,
Lahann
,
J.
,
Kotov
,
N. A.
, and
Kipke
,
D. R.
,
2012
, “
Ultrasmall Implantable Composite Microelectrodes With Bioactive Surfaces for Chronic Neural Interfaces
,”
Nat. Mater.
,
11
(
12
), pp.
1065
1073
.
17.
Lecomte
,
A.
,
Descamps
,
E.
, and
Bergaud
,
C.
,
2018
, “
A Review on Mechanical Considerations for Chronically-Implanted Neural Probes
,”
J. Neural. Eng.
,
15
(
3
), p.
031001
.
18.
Timoshenko
,
S. P.
,
1936
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York; London
.
19.
Patel
,
P. R.
,
Kotov
,
N. A.
,
Yoon
,
E.
,
Chestek
,
C. A.
,
Na
,
K.
,
Zhang
,
H.
, and
Kozai
,
T. D. Y.
,
2015
, “
Insertion of Linear 8.4 µm Diameter 16 Channel Carbon Fiber Electrode Arrays for Single Unit Recordings
,”
J. Neural. Eng.
,
12
(
4
), p.
046009
.
20.
Sheng
,
H.
,
Wang
,
X.
,
Kong
,
N.
,
Xi
,
W.
,
Yang
,
H.
,
Wu
,
X.
,
Wu
,
K.
, et al
,
2019
, “
Neural Interfaces by Hydrogels
,”
Extreme Mech. Lett.
,
30
, p.
100510
.
21.
Hess-Dunning
,
A.
, and
Tyler
,
D. J.
,
2018
, “
A Mechanically-Adaptive Polymer Nanocomposite-Based Intracortical Probe and Package for Chronic Neural Recording
,”
Micromachines
,
9
(
11
), p.
583
.
22.
Tang
,
C.
,
Xie
,
S.
,
Wang
,
M.
,
Feng
,
J.
,
Wu
,
X.
,
Wang
,
L.
,
Chen
,
C.
, et al
,
2020
, “
A Fiber-Shaped Neural Probe With Alterable Elastic Moduli for Direct Implantation and Stable Electronic-Brain Interfaces
,”
J. Mater. Chem. B
,
8
(
20
), pp.
4387
4394
.
23.
Rezaei
,
S.
,
Xu
,
Y.
, and
Pang
,
S. W.
,
2019
, “
Control of Neural Probe Shank Flexibility by Fluidic Pressure in Embedded Microchannel Using PDMS/PI Hybrid Substrate
,”
PLoS One
,
14
(
7
), p.
e0220258
.
24.
Wen
,
X.
,
Wang
,
B.
,
Huang
,
S.
,
Liu
,
T. L.
,
Lee
,
M.-S.
,
Chung
,
P.-S.
,
Chow
,
Y. T.
, et al
,
2019
, “
Flexible, Multifunctional Neural Probe With Liquid Metal Enabled, Ultra-Large Tunable Stiffness for Deep-Brain Chemical Sensing and Agent Delivery
,”
Biosens. Bioelectron.
,
131
, pp.
37
45
.
25.
Hanson
,
T. L.
,
Diaz-Botia
,
C. A.
,
Kharazia
,
V.
,
Maharbiz
,
M. M.
, and
Sabes
,
P. N.
,
2019
, “
The “Sewing Machine” For Minimally Invasive Neural Recording
,”
bioRxiv
, p.
578542
.
26.
Zhang
,
S.
,
Wang
,
C.
,
Gao
,
H.
,
Yu
,
C.
,
Yan
,
Q.
,
Lu
,
Y.
,
Tao
,
Z.
, et al
,
2020
, “
A Removable Insertion Shuttle for Ultraflexible Neural Probe Implantation With Stable Chronic Brain Electrophysiological Recording
,”
Adv. Mater. Interfaces
,
7
(
6
), p.
1901775
.
27.
Joo
,
H. R.
,
Fan
,
J. L.
,
Chen
,
S.
,
Pebbles
,
J. A.
,
Liang
,
H.
,
Chung
,
J. E.
,
Yorita
,
A. M.
, et al
,
2019
, “
A Microfabricated, 3D-Sharpened Silicon Shuttle for Insertion of Flexible Electrode Arrays Through Dura Mater Into Brain
,”
J. Neural. Eng.
,
16
(
6
), p.
066021
.
28.
Na
,
K.
,
Sperry
,
Z. J.
,
Lu
,
J.
,
Vöröslakos
,
M.
,
Parizi
,
S. S.
,
Bruns
,
T. M.
,
Yoon
,
E.
, and
Seymour
,
J. P.
,
2020
, “
Novel Diamond Shuttle to Deliver Flexible Neural Probe With Reduced Tissue Compression
,”
Microsyst. Nanoeng.
,
6
(
1
), p.
37
.
29.
Guan
,
S.
,
Wang
,
J.
,
Gu
,
X.
,
Zhao
,
Y.
,
Hou
,
R.
,
Fan
,
H.
,
Zou
,
L.
, et al
,
2019
, “
Elastocapillary Self-Assembled Neurotassels for Stable Neural Activity Recordings
,”
Sci. Adv.
,
5
(
3
), p.
eaav2842
.
30.
Seo
,
K. J.
,
Artoni
,
P.
,
Qiang
,
Y.
,
Zhong
,
Y.
,
Han
,
X.
,
Shi
,
Z.
,
Yao
,
W.
,
Fagiolini
,
M.
, and
Fang
,
H.
,
2019
, “
Transparent, Flexible, Penetrating Microelectrode Arrays With Capabilities of Single-Unit Electrophysiology
,”
Adv. Biosyst.
,
3
(
3
), p.
1800276
.
31.
Ceyssens
,
F.
,
Bovet Carmona
,
M.
,
Kil
,
D.
,
Deprez
,
M.
,
Tooten
,
E.
,
Nuttin
,
B.
,
Takeoka
,
A.
,
Balschun
,
D.
,
Kraft
,
M.
, and
Puers
,
R.
,
2019
, “
Chronic Neural Recording With Probes of Subcellular Cross-Section Using 0.06 mm2 Dissolving Microneedles as Insertion Device
,”
Sens. Actuators, B
,
284
, pp.
369
376
.
32.
Shoffstall
,
A. J.
,
Srinivasan
,
S.
,
Willis
,
M.
,
Stiller
,
A. M.
,
Ecker
,
M.
,
Voit
,
W. E.
,
Pancrazio
,
J. J.
, and
Capadona
,
J. R.
,
2018
, “
A Mosquito Inspired Strategy to Implant Microprobes Into the Brain
,”
Sci. Rep.
,
8
(
1
), p.
122
.
33.
Arafat
,
M. A.
,
Rubin
,
L. N.
,
Jefferys
,
J. G. R.
, and
Irazoqui
,
P. P.
,
2019
, “
A Method of Flexible Micro-Wire Electrode Insertion in Rodent for Chronic Neural Recording and a Device for Electrode Insertion
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
9
), pp.
1724
1731
.
34.
Jensen
,
W.
,
Yoshida
,
K.
, and
Hofmann
,
U. G.
,
2006
, “
In-Vivo Implant Mechanics of Flexible, Silicon-Based ACREO Microelectrode Arrays in Rat Cerebral Cortex
,”
IEEE Trans. Biomed. Eng.
,
53
(
5
), pp.
934
940
.
35.
Sharp
,
A. A.
,
Ortega
,
A. M.
,
Restrepo
,
D.
,
Curran-Everett
,
D.
, and
Gall
,
K.
,
2009
, “
In Vivo Penetration Mechanics and Mechanical Properties of Mouse Brain Tissue at Micrometer Scales
,”
IEEE Trans. Biomed. Eng.
,
56
(
1
), pp.
45
53
.
36.
Wester
,
B. A.
,
Lee
,
R. H.
, and
LaPlaca
,
M. C.
,
2009
, “
Development and Characterization of In Vivo Flexible Electrodes Compatible With Large Tissue Displacements
,”
J. Neural. Eng.
,
6
(
2
), p.
024002
.
37.
Crawley
,
E. F.
, and
Anderson
,
E. H.
,
1990
, “
Detailed Models of Piezoceramic Actuation of Beams
,”
J. Intell. Mater. Syst. Struct.
,
1
(
1
), pp.
4
25
.
38.
Maleki
,
V. A.
, and
Mohammadi
,
N.
,
2017
, “
Buckling Analysis of Cracked Functionally Graded Material Column With Piezoelectric Patches
,”
Smart Mater. Struct.
,
26
(
3
), p.
035031
.
39.
Crawley
,
E. F.
, and
de Luis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.
40.
Yagi
,
S.
,
Yamagiwa
,
S.
,
Kubota
,
Y.
,
Sawahata
,
H.
,
Numano
,
R.
,
Imashioya
,
T.
,
Oi
,
H.
,
Ishida
,
M.
, and
Kawano
,
T.
,
2015
, “
Dissolvable Base Scaffolds Allow Tissue Penetration of High-Aspect-Ratio Flexible Microneedles
,”
Adv. Healthcare Mater.
,
4
(
13
), pp.
1949
1955
.
41.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
,
New York
.
42.
Rezaee
,
M.
, and
Sharafkhani
,
N.
,
2017
, “
Electrostatically Frequency Tunable Micro-Beam-Based Piezoelectric Fluid Flow Energy Harvester
,”
Smart Mater. Struct.
,
26
(
7
), p.
075008
.
43.
Shaker
,
F.
, 1975, “
Effect of Axial Load on Mode Shapes and Frequencies of Beams
,” NASA Technical Note, NASA Lewis Research Center, Cleveland, OH.
44.
Kuliński
,
K.
, and
Przybylski
,
J.
,
2017
, “
Piezoelectric Effect on Transversal Vibrations and Buckling of a Beam With Varying Cross Section
,”
Mech. Res. Commun.
,
82
, pp.
43
48
.
45.
Nguyen
,
M. D.
,
Houwman
,
E. P.
,
Dekkers
,
M.
, and
Rijnders
,
G.
,
2017
, “
Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films With Vertically Aligned Columnar Grains
,”
ACS Appl. Mater. Interfaces
,
9
(
11
), pp.
9849
9861
.
46.
Benouhiba
,
A.
,
Belharet
,
D.
,
Bienaimé
,
A.
,
Chalvet
,
V.
,
Rakotondrabe
,
M.
, and
Clévy
,
C.
,
2018
, “
Development and Characterization of Thinned PZT Bulk Technology Based Actuators Devoted to a 6-DOF Micropositioning Platform
,”
Microelectron. Eng.
,
197
, pp.
53
60
.
You do not currently have access to this content.