Abstract

Many biological materials have outstanding properties unparalleled by artificial materials because of their periodic and/or hierarchical structures. In this paper, the longitudinal elastic wave propagation in nacre-like materials with brick-and-mortar microstructures has been studied theoretically by taking the different deformation mechanisms into account. A viscoelastic model in relation to the sacrificial bond behavior for the organic matrix has been developed. The shear-lag model is adopted to simulate the deformation of the brick-mortar structure. Complex band structures have been analyzed and the mechanical model has been validated by finite element method. Results have shown that bandgaps with lower edge close to vanishing frequency may arise in such bio-inspired periodic structures and attenuated propagation of elastic waves may be dominant in the range of higher frequencies. It may cast light on the dynamic strengthening mechanisms in nacre-like materials and provide a scientific basis for the design of bio-inspired metamaterials with low-frequency bandgaps.

References

1.
Buehler
,
M. J.
,
2007
, “
Nano- and Micromechanical Properties of Hierarchical Biological Materials and Tissues
,”
J. Mater. Sci.
,
42
(
21
), pp.
8765
8770
.
2.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature’s Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
.
3.
Huang
,
W.
,
Shishehbor
,
M.
,
GuarínZapata
,
N.
,
Kirchhofer
,
N. D.
,
Li
,
J.
,
Cruz
,
L.
,
Wang
,
T. F.
, et al
,
2020
, “
A Natural Impact-Resistant Bicontinuous Composite Nanoparticle Coating
,”
Nat. Mater.
,
19
(
11
), pp.
1236
1243
.
4.
Schaefer
,
I.
,
Mlikota
,
M.
,
Schmauder
,
S.
, and
Weber
,
U.
,
2020
, “
Modelling the Damping Response of Biomimetic Foams Based on Pomelo Fruit
,”
Comput. Mater. Sci.
,
183
, p.
109801
.
5.
Barthelat
,
F.
,
2015
, “
Architectured Materials in Engineering and Biology: Fabrication, Structure, Mechanics and Performance
,”
Int. Mater. Rev.
,
60
(
8
), pp.
413
430
.
6.
Barthelat
,
F.
, and
Zhu
,
D. J.
,
2011
, “
A Novel Biomimetic Material Duplicating the Structure and Mechanics of Natural Nacre
,”
J. Mater. Res.
,
26
(
10
), pp.
1203
1215
.
7.
Dutta
,
A.
,
Tekalur
,
S. A.
, and
Miklavcic
,
M.
,
2013
, “
Optimal Overlap Length in Staggered Architecture Composites Under Dynamic Loading Conditions
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
145
160
.
8.
Shao
,
Y.
,
Zhao
,
H. P.
, and
Feng
,
X. Q.
,
2014
, “
On Flaw Tolerance of Nacre: A Theoretical Study
,”
J. R. Soc. Interface
,
11
(
92
), p.
20131016
.
9.
Shao
,
Y.
,
Zhao
,
H. P.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2012
, “
Discontinuous Crack-Bridging Model for Fracture Toughness Analysis of Nacre
,”
J. Mech. Phys. Solids
,
60
(
8
), pp.
1400
1419
.
10.
Song
,
J. R.
,
Fan
,
C. C.
,
Ma
,
H. S.
,
Liang
,
L. H.
, and
Wei
,
Y. G.
,
2018
, “
Crack Deflection Occurs by Constrained Microcracking in Nacre
,”
Acta Mech. Sin.
,
34
(
1
), pp.
151
158
.
11.
Marco
,
M.
,
Krushynska
,
A.
,
Gliozzi
,
A. S.
,
Kherraz
,
N.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2018
, “
Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterials
,”
Phys. Rev. Appl.
,
10
(
2
), p.
024012
.
12.
Guarín-Zapata
,
N.
,
Gomez
,
J.
,
Yaraghi
,
N.
,
Kisailus
,
D.
, and
Zavattieri
,
P. D.
,
2015
, “
Shear Wave Filtering in Naturally-Occurring Bouligand Structures
,”
Acta Biomater.
,
23
, pp.
11
20
.
13.
Chen
,
Y. Y.
, and
Wang
,
L. F.
,
2014
, “
Tunable Band Gaps in Bio-inspired Periodic Composites With Nacre-Like Microstructure
,”
J. Appl. Phys.
,
116
(
6
), p.
063506
.
14.
Chen
,
Y. Y.
, and
Wang
,
L. F.
,
2015
, “
Bio-inspired Heterogeneous Composites for Broadband Vibration Mitigation
,”
Sci. Rep.
,
5
(
1
), p.
17865
.
15.
Wang
,
Y. F.
,
Wang
,
Y. Z.
,
Wu
,
B.
,
Chen
,
W.
, and
Wang
,
Y. S.
,
2020
, “
Tunable and Active Phononic Crystals and Metamaterials
,”
ASME Appl. Mech. Rev.
,
72
(
4
), p.
040801
.
16.
Liu
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2002
, “
Three-Component Elastic Wave Band-Gap Material
,”
Phys. Rev. B
,
65
(
16
), p.
165116
.
17.
Achaoui
,
Y.
,
Khelif
,
A.
,
Benchabane
,
S.
,
Robert
,
L.
, and
Laude
,
V.
,
2011
, “
Experimental Observation of Locally-Resonant and Bragg Band Gaps for Surface Guided Waves in a Phononic Crystal of Pillars
,”
Phys. Rev. B
,
83
(
10
), pp.
5121
5124
.
18.
Casadei
,
F.
, and
Bertoldi
,
K.
,
2014
, “
Wave Propagation in Beams With Periodic Arrays of Airfoil-Shaped Resonating Units
,”
J. Sound Vib.
,
333
(
24
), pp.
6532
6547
.
19.
Krödel
,
S.
,
Thomé
,
N.
, and
Daraio
,
C.
,
2015
, “
Wide Band-Gap Seismic Metastructures
,”
Extreme Mech. Lett.
,
4
, pp.
111
117
.
20.
Sugino
,
C.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2016
, “
On the Mechanism of Bandgap Formation in Locally Resonant Finite Elastic Metamaterials
,”
J. Appl. Phys.
,
120
(
13
), p.
134501
.
21.
Fantner
,
G. E.
,
Hassenkam
,
T.
,
Kindt
,
J. H.
,
Weaver
,
J. C.
,
Birkedal
,
H.
,
Pechenik
,
L.
,
Cutroni
,
J. A.
, et al
,
2005
, “
Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate During Bone Fracture
,”
Nat. Mater.
,
4
(
8
), pp.
612
616
.
22.
Barthelat
,
F.
,
Yin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Structure and Mechanics of Interfaces in Biological Materials
,”
Nat. Rev. Mater.
,
1
(
4
), p.
16007
.
23.
Sumitomo
,
T.
,
Kakisawa
,
H.
,
Owaki
,
Y.
, and
Kagawa
,
Y.
,
2008
, “
In Situ Transmission Electron Microscopy Observation of Reversible Deformation in Nacre Organic Matrix
,”
J. Mater. Res.
,
23
(
5
), pp.
1466
1471
.
24.
Bell
,
G. I.
,
1978
, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.
25.
Persson
,
B. N. J.
,
1998
,
Sliding Friction
,
Springer
,
Berlin
, pp.
69
75
.
26.
Liu
,
J. J.
,
Zhu
,
W. Q.
,
Yu
,
Z. L.
, and
Wei
,
X. D.
,
2018
, “
Dynamic Shear-Lag Model for Understanding the Role of Matrix in Energy Dissipation in Fiber-Reinforced Composites
,”
Acta Biomater.
,
74
, pp.
270
279
.
27.
Wu
,
J. Y.
,
Yuan
,
H.
,
Li
,
L. Y.
,
Fan
,
K. J.
,
Qian
,
S. G.
, and
Li
,
B.
,
2018
, “
Viscoelastic Shear Lag Model to Predict the Micromechanical Behavior of Tendon Under Dynamic Tensile Loading
,”
J. Theor. Biol.
,
437
, pp.
202
213
.
28.
Ji
,
B. H.
, and
Gao
,
H. J.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.
29.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Gao
,
H.
,
2010
, “
Mechanical Properties of Unidirectional Nanocomposites With Non-Uniformly or Randomly Staggered Platelet Distribution
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1646
1660
.
30.
Moshe-Drezner
,
H.
,
Shilo
,
D.
,
Dorogoy
,
A.
, and
Zolotoyabko
,
E.
,
2010
, “
Nanometer-Scale Mapping of Elastic Modules in Biogenic Composites: The Nacre of Mollusk Shells
,”
Adv. Funct. Mater.
,
20
(
16
), pp.
2723
2728
.
31.
Sun
,
C. T.
,
Achenbach
,
J. D.
, and
Herrmann
,
G.
,
1968
, “
Continuum Theory for a Laminated Medium
,”
ASME J. Appl. Mech.
,
35
(
3
), pp.
467
475
.
32.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4–5
), pp.
779
806
.
33.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2007
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Design
,”
J. Sound Vib.
,
307
(
3–5
), pp.
865
893
.
34.
Bin
,
J.
,
Oates
,
W. S.
, and
Hussaini
,
M. Y.
,
2015
, “
An Analysis of a Discontinuous Spectral Element Method for Elastic Wave Propagation in a Heterogeneous Material
,”
Comput. Mech.
,
55
(
4
), pp.
789
804
.
35.
Yang
,
W. H.
, and
Lee
,
E. H.
,
1974
, “
Modal Analysis of Floquet Waves in Composite Materials
,”
ASME J. Appl. Mech.
,
41
(
2
), pp.
429
433
.
36.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch’s Method and the Propagation Technique in Periodic Structures
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031010
.
37.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.
38.
Cenedese
,
M.
,
Belloni
,
E.
, and
Braghin
,
F.
,
2021
, “
Interaction of Bragg Scattering Bandgaps and Local Resonators in Mono-Coupled Periodic Structures
,”
J. Appl. Phys.
,
129
(
12
), p.
124501
.
39.
Wang
,
R. Z.
, and
Gupta
,
H. S.
,
2011
, “
Deformation and Fracture Mechanisms of Bone and Nacre
,”
Annu. Rev. Mater. Res.
,
41
(
1
), pp.
41
73
.
40.
Wu
,
X. D.
,
Meng
,
X. S.
, and
Zhang
,
H. G.
,
2020
, “
An Experimental Investigation of the Dynamic Fracture Behavior of 3D Printed Nacre-Like Composites
,”
J. Mech. Behav. Biomed. Mater.
,
112
, p.
104068
.
41.
Liu
,
J. J.
,
Hai
,
X. S.
,
Zhu
,
W. Q.
, and
Wei
,
X. D.
,
2018
, “
Optimization of Damping Properties of Staggered Composites Through Microstructure Design
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101002
.
42.
Barsegov
,
V.
, and
Thirumalai
,
D.
,
2005
, “
Dynamics of Unbinding of Cell Adhesion Molecules: Transition From Catch to Slip Bonds
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
6
), pp.
1835
1839
.
43.
Xu
,
Z. L.
,
Wu
,
F. G.
, and
Guo
,
Z. N.
,
2012
, “
Low Frequency Phononic Band Structures in Two-Dimensional Arc-Shaped Phononic Crystals
,”
Phys. Lett. A
,
376
(
33
), pp.
2256
2263
.
44.
Achaoui
,
Y.
,
Antonakakis
,
T.
,
BrûLé
,
S.
,
Craster
,
R. V.
,
Enoch
,
S.
, and
Guenneau
,
S.
,
2017
, “
Clamped Seismic Metamaterials: Ultra-Low Broad Frequency Stop-Bands
,”
New J. Phys.
,
19
(
6
), p.
063022
.
45.
Ren
,
T.
,
Liu
,
C. C.
,
Li
,
F. M.
, and
Zhang
,
C. Z.
,
2020
, “
Active Tunability of Band Gaps for a Novel Elastic Metamaterial Plate
,”
Acta Mech.
,
231
(
10
), pp.
4035
4053
.
You do not currently have access to this content.