Abstract

Nozzle facilities, which can generate high Mach number flows, are the core portions of the supersonic wind tunnel. Different from traditional fixed nozzles, a flexible nozzle can deform to designed contours and supply steady core flows in several Mach numbers. Due to the high-quality demands from the thermo-aerodynamic testing, the deformation of the flexible nozzle plate should be carefully designed. This problem is usually converted into the large deformation problem of a cantilever with movable hinge boundary conditions. In this paper, a generalized variational method is established to analyze the deformation behavior of the flexible nozzle. By introducing axial deformation constraint and Lagrange multiplier, an analytical model is derived to predict the deformed morphology of the flexible plate. Finite element analyses (FEA) of a single-jack flexible nozzle model is performed to examine the predicted deformations and reaction forces. Furthermore, the large deformation experiments of an elastic cantilever with a movable hinge connection are carried out to simulate the scenarios in supersonic flexible nozzle facility. Both the FEA and experimental results show high accuracy of current theoretical model in deformation predictions. This method can also serve as a general approach in the design of flexible mechanisms with movable boundaries.

References

1.
Atieh
,
A.
,
Al Shariff
,
S.
, and
Ahmed
,
N.
,
2016
, “
Novel Wind Tunnel
,”
Sustainable Cities Soc.
,
25
, pp.
102
107
.
2.
Murugappan
,
S.
,
Gutmark
,
E. J.
,
Lakhamraju
,
R. R.
, and
Khosla
,
S.
,
2008
, “
Flow-Structure Interaction Effects on a Jet Emanating From a Flexible Nozzle
,”
Phys. Fluids
,
20
(
11
), p.
117105
.
3.
Erdmann
,
S. F.
,
1971
, “
A New Economic Flexible Nozzle for Supersonic Wind Tunnels
,”
J. Aircr.
,
8
(
1
), pp.
58
60
.
4.
Rom
,
J.
, and
Etsion
,
I.
,
1972
, “
Improved Flexible Supersonic Wind-Tunnel Nozzle Operated by a Single Jack
,”
AIAA J.
,
10
(
12
), pp.
1697
1699
.
5.
Rosen
,
J.
,
1955
, “
The Design and Calibration of a Variable Mach Number Nozzle
,”
Int. J. Aeronaut. Space Sci.
,
22
(
7
), pp.
484
490
.
6.
Lv
,
Z.
,
Xu
,
J.
,
Wu
,
F.
,
Chen
,
P.
, and
Wang
,
J.
,
2018
, “
Design of a Variable Mach Number Wind Tunnel Nozzle Operated by a Single Jack
,”
Aerosp. Sci. Technol.
,
77
, pp.
299
305
.
7.
Winarto
,
H.
, and
Stalker
,
R. J.
,
1984
, “
Design Parameters and Performance of Two-Dimensional, Asymmetric, ‘Sliding Block’, Variable Mach Number, Supersonic Nozzles
,”
Aeronaut. J.
,
88
(
876
), pp.
270
280
.
8.
Liepman
,
H. P.
,
1955
, “
An Analytic Method for the Design of Two-Dimensional Asymmetric Nozzles
,”
Int. J. Aeronaut. Space Sci.
,
22
(
10
), pp.
701
709
.
9.
Chen
,
P.
,
Wu
,
F.
,
Xu
,
J.
,
Feng
,
X.
, and
Yang
,
Q.
,
2016
, “
Design and Implementation of Rigid-Flexible Coupling for a Half-Flexible Single Jack Nozzle
,”
Chin. J. Aeronaut.
,
29
(
6
), pp.
1477
1483
.
10.
Sun
,
S.
,
Zhang
,
H.
,
Cheng
,
K.
, and
Wu
,
Y.
,
2007
, “
The Full Flowpath Analysis of a Hypersonic Vehicle
,”
Chin. J. Aeronaut.
,
20
(
5
), pp.
385
393
.
11.
Yu
,
C.
,
Chen
,
Z.
, and
Nie
,
X.
,
2012
, “
Multi-Jack Single-Drive Semi-Flexible Nozzle Mechanism Design and Simulation
,”
2nd International Conference on Frontiers of Manufacturing Science and Measuring Technology (ICFMM 2012)
,
Xi'an, China
,
June 12–13
, Trans Tech Publications Ltd., Vol. 503–504, pp.
892
895
.
12.
Jiao
,
X.
,
Chang
,
J.
,
Wang
,
Z.
, and
Yu
,
D.
,
2017
, “
Numerical Study on Hypersonic Nozzle-Inlet Starting Characteristics in a Shock Tunnel
,”
Acta Astronaut.
,
130
, pp.
167
179
.
13.
Guo
,
S. G.
,
Wang
,
Z. G.
, and
Zhao
,
Y. X.
,
2015
, “
Design of a Continuously Variable Mach-Number Nozzle
,”
J. Cent. South Univ.
,
22
(
2
), pp.
522
528
.
14.
Yang
,
Y.
,
Wen
,
C.
,
Wang
,
S. L.
,
Feng
,
Y. Q.
, and
Witt
,
P.
,
2014
, “
The Swirling Flow Structure in Supersonic Separators for Natural Gas Dehydration
,”
RSC Adv.
,
4
(
95
), pp.
52967
52972
.
15.
Su
,
Y.
,
Wu
,
J.
,
Fan
,
Z.
,
Hwang
,
K.-C.
,
Song
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Postbuckling Analysis and Its Application to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
487
508
.
16.
Chien
,
W. Z.
,
2002
, “
Second Order Approximation Solution of Nonlinear Large Deflection Problems of Yongjiang Railway Bridge in Ningbo
,”
Appl. Math. Mech. (Engl. Ed.)
,
23
(
5
), pp.
493
506
.
17.
Shoup
,
T. E.
, and
Mclarnan
,
C. W.
,
1971
, “
On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms
,”
J. Eng. Ind.
,
93
(
1
), pp.
263
267
.
18.
Liu
,
H. G.
,
Bian
,
K.
, and
Xiong
,
K.
,
2019
, “
Large Nonlinear Deflection Behavior of IPMC Actuators Analyzed With an Electromechanical Model
,”
Acta Mech. Sin.
,
35
(
5
), pp.
992
1000
.
19.
Xu
,
K.
,
Liu
,
H.
, and
Xiao
,
J.
,
2021
, “
Static Deflection Modeling of Combined Flexible Beams Using Elliptic Integral Solution
,”
Int. J. Non-Linear Mech.
,
129
, p.
103637
.
20.
Li
,
Z.
,
Yu
,
C.
,
Qi
,
L.
,
Xing
,
S.
,
Shi
,
Y.
, and
Gao
,
C.
,
2022
, “
Mechanical Behaviors of the Origami-Inspired Horseshoe-Shaped Solar Arrays
,”
Micromachines
,
13
(
5
), p.
732
.
21.
Wang
,
C. M.
, and
Kitipornchai
,
S.
,
1992
, “
Shooting Optimization Technique for Large Deflection Analysis of Structural Members
,”
Eng. Struct.
,
14
(
4
), pp.
231
240
.
22.
Nallathambi
,
A. K.
,
Rao
,
C. L.
, and
Srinivasan
,
S. M.
,
2010
, “
Large Deflection of Constant Curvature Cantilever Beam Under Follower Load
,”
Int. J. Mech. Sci.
,
52
(
3
), pp.
440
445
.
23.
Abdalla
,
H. M. A.
, and
Casagrande
,
D.
,
2020
, “
On the Longest Reach Problem in Large Deflection Elastic Rods
,”
Int. J. Non-Linear Mech.
,
119
(
1
), p.
103310
.
You do not currently have access to this content.