Abstract

We present a theoretical and computational framework based on fractional calculus for the analysis of the nonlocal static response of cylindrical shell panels. The differ-integral nature of fractional derivatives allows an efficient and accurate methodology to account for the effect of long-range (nonlocal) interactions in curved structures. More specifically, the use of frame-invariant fractional-order kinematic relations enables a physically, mathematically, and thermodynamically consistent formulation to model the nonlocal elastic interactions. To evaluate the response of these nonlocal shells under practical scenarios involving generalized loads and boundary conditions, the fractional-finite element method (f-FEM) is extended to incorporate shell elements based on the first-order shear-deformable displacement theory. Finally, numerical studies are performed exploring both the linear and the geometrically nonlinear static response of nonlocal cylindrical shell panels. This study is intended to provide a general foundation to investigate the nonlocal behavior of curved structures by means of fractional-order models.

References

1.
Librescu
,
L.
,
1975
,
Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures
, Vol.
2
.
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
2.
Amabili
,
M.
, and
Paıdoussis
,
M. P.
,
2003
, “
Review of Studies on Geometrically Nonlinear Vibrations and Dynamics of Circular Cylindrical Shells and Panels, With and Without Fluid-Structure Interaction
,”
Appl. Mech. Rev.
,
56
(
4
), pp.
349
381
.
3.
Carrera
,
E.
,
2003
, “
Historical Review of Zig-zag Theories for Multilayered Plates and Shells
,”
Appl. Mech. Rev.
,
56
(
3
), pp.
287
308
.
4.
Alijani
,
F.
, and
Amabili
,
M.
,
2014
, “
Non-Linear Vibrations of Shells: A Literature Review From 2003 to 2013
,”
Int. J. Non-Linear Mech.
,
58
, pp.
233
257
.
5.
Arash
,
B.
, and
Wang
,
Q.
,
2012
, “
A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
303
313
.
6.
Behera
,
L.
, and
Chakraverty
,
S.
,
2017
, “
Recent Researches on Nonlocal Elasticity Theory in the Vibration of Carbon Nanotubes Using Beam Models: A Review
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
481
494
.
7.
Patnaik
,
S.
,
Jokar
,
M.
,
Ding
,
W.
, and
Semperlotti
,
F.
,
2022
, “
On the Role of the Microstructure in the Deformation of Porous Solids
,” arXiv preprint arXiv:2202.06750.
8.
Patnaik
,
S.
,
Jokar
,
M.
, and
Semperlotti
,
F.
,
2021
, “
Variable-Order Approach to Nonlocal Elasticity: Theoretical Formulation, Order Identification Via Deep Learning, and Applications
,”
Comput. Mech.
,
69
(
1
), pp.
267
298
.
9.
Bulle
,
R.
,
Alotta
,
G.
,
Marchiori
,
G.
,
Berni
,
M.
,
Lopomo
,
N. F.
,
Zaffagnini
,
S.
,
Bordas
,
S.
, and
Barrera
,
O.
,
2021
, “
The Human Meniscus Behaves ss a Functionally Graded Fractional Porous Medium Under Confined Compression Conditions
,”
Appl. Sci.
,
11
(
20
), p.
9405
.
10.
Fellah
,
Z. E. A.
,
Chapelon
,
J. Y.
,
Berger
,
S.
,
Lauriks
,
W.
, and
Depollier
,
C.
,
2004
, “
Ultrasonic Wave Propagation in Human Cancellous Bone: Application of Biot Theory
,”
J. Acoust. Soc. Ame.
,
116
(
1
), pp.
61
73
.
11.
Russillo
,
A. F.
, and
Failla
,
G.
,
2022
, “
Wave Propagation in Stress-Driven Nonlocal Rayleigh Beam Lattices
,”
Int. J. Mech. Sci.
,
215
, p.
106901
.
12.
Nair
,
S.
,
Jokar
,
M.
, and
Semperlotti
,
F.
,
2022
, “
Nonlocal Acoustic Black Hole Metastructures: Achieving Broadband and Low Frequency Passive Vibration Attenuation
,”
Mech. Syst. Signal. Process.
,
169
, p.
108716
.
13.
Zhu
,
H.
,
Patnaik
,
S.
,
Walsh
,
T. F.
,
Jared
,
B. H.
, and
Semperlotti
,
F.
,
2020
, “
Nonlocal Elastic Metasurfaces: Enabling Broadband Wave Control Via Intentional Nonlocality
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
42
), pp.
26099
26108
.
14.
Romanoff
,
J.
,
Karttunen
,
A.
, and
Varsta
,
P.
,
2020
, “
Design Space for Bifurcation Buckling of Laser-Welded Web-Core Sandwich Plates as Predicted by Classical and Micropolar Plate Theories
,”
Ann. Solid Struct. Mech.
,
12
(
1
), pp.
73
87
.
15.
Eringen
,
A. C.
,
1972
, “
Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves
,”
Int. J. Eng. Sci.
,
10
(
5
), pp.
425
435
.
16.
Romano
,
G.
, and
Barretta
,
R.
,
2017
, “
Stress-Driven Versus Strain-Driven Nonlocal Integral Model for Elastic Nano-Beams
,”
Compos. Part B: Eng.
,
114
, pp.
184
188
.
17.
Kröner
,
E.
,
1967
, “
Elasticity Theory of Materials With Long Range Cohesive Forces
,”
Int. J. Solids. Struct.
,
3
(
5
), pp.
731
742
.
18.
Polizzotto
,
C.
,
2001
, “
Nonlocal Elasticity and Related Variational Principles
,”
Int. J. Solids. Struct.
,
38
(
42–43
), pp.
7359
7380
.
19.
Zhang
,
P.
,
Qing
,
H.
, and
Gao
,
C.
,
2019
, “
Theoretical Analysis for Static Bending of Circular Euler–Bernoulli Beam Using Local and Eringen’s Nonlocal Integral Mixed Model
,”
ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik
,
99
(
8
), p.
e201800329
.
20.
Zhang
,
P.
,
Qing
,
H.
, and
Gao
,
C.-F.
,
2020
, “
Analytical Solutions of Static Bending of Curved Timoshenko Microbeams Using Eringen’s Two-phase Local/Nonlocal Integral Model
,”
ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik
,
100
(
7
), p.
e201900207
.
21.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.
22.
Arefi
,
M.
,
2020
, “
Electro-Mechanical Vibration Characteristics of Piezoelectric Nano Shells
,”
Thin-Walled Struct.
,
155
, p.
106912
.
23.
Aminipour
,
H.
,
Janghorban
,
M.
, and
Civalek
,
O.
,
2020
, “
Analysis of Functionally Graded Doubly-Curved Shells With Different Materials Via Higher Order Shear Deformation Theory
,”
Compos. Struct.
,
251
, p.
112645
.
24.
Babaei
,
H.
, and
Eslami
,
M. R.
,
2021
, “
On Nonlinear Vibration and Snap-Through Buckling of Long FG Porous Cylindrical Panels Using Nonlocal Strain Gradient Theory
,”
Compos. Struct.
,
256
, p.
113125
.
25.
Lu
,
P.
,
Lee
,
H.
,
Lu
,
C.
, and
Zhang
,
P.
,
2007
, “
Application of Nonlocal Beam Models for Carbon Nanotubes
,”
Int. J. Solids. Struct.
,
44
(
16
), pp.
5289
5300
.
26.
Reddy
,
J. N.
, and
Pang
,
S. D.
,
2008
, “
Nonlocal Continuum Theories of Beams for the Analysis of Carbon Nanotubes
,”
J. Appl. Phys.
,
103
(
2
), p.
023511
.
27.
Challamel
,
N.
,
Zhang
,
Z.
,
Wang
,
C. M.
,
Reddy
,
J. N.
,
Wang
,
Q.
,
Michelitsch
,
T.
, and
Collet
,
B.
,
2014
, “
On Nonconservativeness of Eringen’s Nonlocal Elasticity in Beam Mechanics: Correction From a Discrete-Based Approach
,”
Arch. Appl. Mech.
,
84
(
9–11
), pp.
1275
1292
.
28.
Barretta
,
R.
,
de Sciarra
,
F. M.
, and
Vaccaro
,
M. S.
,
2019
, “
On Nonlocal Mechanics of Curved Elastic Beams
,”
Int. J. Eng. Sci.
,
144
, p.
103140
.
29.
Zhang
,
P.
,
Qing
,
H.
, and
Gao
,
C.-F.
,
2020
, “
Exact Solutions for Bending of Timoshenko Curved Nanobeams Made of Functionally Graded Materials Based on Stress-Driven Nonlocal Integral Model
,”
Compos. Struct.
,
245
, p.
112362
.
30.
Malikan
,
M.
, and
Eremeyev
,
V. A.
,
2020
, “
Free Vibration of Flexomagnetic Nanostructured Tubes Based on Stress-Driven Nonlocal Elasticity
,”
Analysis of Shells, Plates, and Beams
,
Springer
, pp.
215
226
.
31.
Batra
,
R.
,
2021
, “
Misuse of Eringen’s Nonlocal Elasticity Theory for Functionally Graded Materials
,”
Int. J. Eng. Sci.
,
159
, p.
103425
.
32.
Shitikova
,
M.
,
2021
, “
Fractional Operator Viscoelastic Models in Dynamic Problems of Mechanics of Solids: A Review
,”
Mech. Solids
, pp.
1
33
.
33.
Lazopoulos
,
K. A.
,
2006
, “
Non-Local Continuum Mechanics and Fractional Calculus
,”
Mech. Res. Commun.
,
33
(
6
), pp.
753
757
.
34.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
,
2009
, “
Generalized Wave Equation in Nonlocal Elasticity
,”
Acta Mechanica
,
208
(
1–2
), pp.
1
10
.
35.
Di Paola
,
M.
,
Failla
,
G.
,
Pirrotta
,
A.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2013
, “
The Mechanically Based Non-Local Elasticity: An Overview of Main Results and Future Challenges
,”
Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
371
(
1993
), p.
20120433
.
36.
Sumelka
,
W.
,
2014
, “
Thermoelasticity in the Framework of the Fractional Continuum Mechanics
,”
J. Thermal Stresses
,
37
(
6
), pp.
678
706
.
37.
Sumelka
,
W.
, and
Blaszczyk
,
T.
,
2014
, “
Fractional Continua for Linear Elasticity
,”
Arch. Mech.
,
66
(
3
), pp.
147
172
.
38.
Alotta
,
G.
,
Failla
,
G.
, and
Zingales
,
M.
,
2017
, “
Finite-Element Formulation of a Nonlocal Hereditary Fractional-Order Timoshenko Beam
,”
J. Eng. Mech.
,
143
(
5
), p.
D4015001
.
39.
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2020
, “
A Generalized Fractional-Order Elastodynamic Theory for Non-Local Attenuating Media
,”
Proc. R. Soc. A
,
476
(
2238
), p.
20200200
.
40.
Patnaik
,
S.
,
Sidhardh
,
S.
, and
Semperlotti
,
F.
,
2020
, “
A Ritz-Based Finite Element Method for a Fractional-Order Boundary Value Problem of Nonlocal Elasticity
,”
Int. J. Solids. Struct.
,
202
, pp.
398
417
.
41.
Patnaik
,
S.
,
Sidhardh
,
S.
, and
Semperlotti
,
F.
,
2022
, “
Displacement-driven Approach to Nonlocal Elasticity
,”
Eur. J. Mech. A/Solids
,
92
, p.
104434
.
42.
Sidhardh
,
S.
,
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2021
, “
Thermodynamics of Fractional-Order Nonlocal Continua and Its Application to the Thermoelastic Response of Beams
,”
Eur. J. Mech. A/Solids
,
88
, p.
104238
.
43.
Sidhardh
,
S.
,
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2020
, “
Geometrically Nonlinear Response of a Fractional-Order Nonlocal Model of Elasticity
,”
Int. J. Nonlinear Mech.
,
125
, p.
103529
.
44.
Patnaik
,
S.
,
Sidhardh
,
S.
, and
Semperlotti
,
F.
,
2020
, “
Geometrically Nonlinear Analysis of Nonlocal Plates Using Fractional Calculus
,”
Int. J. Mech. Sci.
,
179
, p.
105710
.
45.
Sidhardh
,
S.
,
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2021
, “
Fractional-Order Structural Stability: Formulation and Application to the Critical Load of Nonlocal Slender Structures
,”
Int. J. Mech. Sci.
,
201
, p.
106443
.
46.
Ding
,
W.
,
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2021
, “
Multiscale Nonlocal Elasticity: A Distributed Order Fractional Formulation
,”
Int. J. Mech. Sci.
,
226
, p.
107381
.
47.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
48.
Kreyszig
,
E.
,
1991
,
Introductory Functional Analysis With Applications
, Vol.
17
.
John Wiley & Sons
, Hoboken, NJ.
49.
Tarasov
,
V. E.
,
2005
, “
Fractional Generalization of Gradient and Hamiltonian Systems
,”
J. Phys. A: Math. Gen.
,
38
(
26
), p.
5929
.
50.
Cottrill-Shepherd
,
K.
, and
Naber
,
M.
,
2001
, “
Fractional Differential Forms
,”
J. Math. Phys.
,
42
(
5
), pp.
2203
2212
.
51.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
Cambridge, MA
.
52.
Hollkamp
,
J. P.
,
Sen
,
M.
, and
Semperlotti
,
F.
,
2019
, “
Analysis of Dispersion and Propagation Properties in a Periodic Rod Using a Space-Fractional Wave Equation
,”
J. Sound. Vib.
,
441
, pp.
204
220
.
53.
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2020
, “
Modeling Contacts and Hysteretic Behavior in Discrete Systems Via Variable-Order Fractional Operators
,”
ASME J. Comput. Nonlinear. Dyn.
,
15
(
9
), p.
091008
.
54.
Coimbra
,
C. F.
,
2003
, “
Mechanics With Variable-Order Differential Operators
,”
Annalen der Physik
,
12
(
11–12
), pp.
692
703
.
55.
Suzuki
,
J. L.
,
Tuttle
,
T. G.
,
Roccabianca
,
S.
, and
Zayernouri
,
M.
,
2021
, “
A Data-Driven Memory-Dependent Modeling Framework for Anomalous Rheology: Application to Urinary Bladder Tissue
,”
Fractal and Fract.
,
5
(
4
), p.
223
.
56.
Balankin
,
A. S.
,
2015
, “
A Continuum Framework for Mechanics of Fractal Materials I: From Fractional Space to Continuum With Fractal Metric
,”
Eur. Phys. J. B
,
88
(
4
), pp.
1
13
.
57.
Wolfram
,
S.
,
1991
,
Mathematica: A System for Doing Mathematics by Computer
,
Addison Wesley Longman Publishing Co., Inc,
,
Redwood City, CA
.
58.
Patnaik
,
S.
,
Sidhardh
,
S.
, and
Semperlotti
,
F.
,
2021
, “
Fractional-Order Models for the Static and Dynamic Analysis of Nonlocal Plates
,”
Commun. Nonlinear Sci. Numer. Simul.
,
95
, p.
105601
.
You do not currently have access to this content.