Abstract

The Green’s function of a bimaterial infinite domain with a plane interface is applied to thermal analysis of a spherical underground heat storage tank. The heat transfer from a spherical source is derived from the integral of the Green’s function over the spherical domain. Because the thermal conductivity of the tank is generally different from soil, the Eshelby’s equivalent inclusion method (EIM) is used to simulate the thermal conductivity mismatch of the tank from the soil. For simplicity, the ground with an approximately uniform temperature on the surface is simulated by a bimaterial infinite domain, which is perfectly conductive above the ground. The heat conduction in the ground is investigated for two scenarios: First, a steady-state uniform heat flux from surface into the ground is considered, and the heat flux is disturbed by the existence of the tank due to the conductivity mismatch. A prescribed temperature gradient, or an eigen-temperature gradient, is introduced to investigate the local temperature field in the neighborhood of the tank. Second, when a temperature difference exists between the water in the tank and soil, the heat transfer between the tank and soil depends on the tank size, conductivity, and temperature difference, which provide a guideline for heat exchange design for the tank size. The modeling framework can be extended to two-dimensional cases, periodic, or transient heat transfer problems for geothermal well operations. The corresponding Green’s functions are provided for those applications.

References

1.
Yin
,
H.
,
Yang
,
D.
,
Kelly
,
G.
, and
Garant
,
J.
,
2013
, “
Design and Performance of a Novel Building Integrated Pv/thermal System for Energy Efficiency of Buildings
,”
Sol. Energy
,
87
, pp.
184
195
.
2.
Yin
,
H.
,
Zadshir
,
M.
, and
Pao
,
F.
,
2021
,
Building Integrated Photovoltaic Thermal Systems: Fundamentals, Designs and Applications
,
Academic Press
,
Cambridge, MA
.
3.
Yumrutaş
,
R.
, and
Ünsal
,
M.
,
2012
, “
Energy Analysis and Modeling of a Solar Assisted House Heating System With a Heat Pump and an Underground Energy Storage Tank
,”
Sol. Energy
,
86
(
3
), pp.
983
993
.
4.
Ingersoll
,
L. R.
,
1948
, “
Theory of the Ground Pipe Heat Source for the Heat Pump
,”
Heat. Pip. Air Condition.
,
20
, pp.
119
122
.
5.
Badache
,
M.
,
Eslami-Nejad
,
P.
,
Ouzzane
,
M.
,
Aidoun
,
Z.
, and
Lamarche
,
L.
,
2016
, “
A New Modeling Approach for Improved Ground Temperature Profile Determination
,”
Renewable Energy
,
85
(
10
), pp.
436
444
.
6.
Pan
,
E.
, and
Chen
,
W.
,
2015
,
Static Green’s Functions in Anisotropic Media
,
Cambridge University Press
,
Cambridge, UK
.
7.
Klein
,
B.
,
Register
,
L. F.
,
Hess
,
K.
,
Deppe
,
D.
, and
Deng
,
Q.
,
1998
, “
Self-Consistent Green’s Function Approach to the Analysis of Dielectrically Apertured Vertical-Cavity Surface-Emitting Lasers
,”
Appl. Phys. Lett.
,
73
(
23
), pp.
3324
3326
.
8.
Hanson
,
G. W.
,
2008
, “
Dyadic Green’s Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene
,”
J. Appl. Phys.
,
103
(
6
), p.
064302
.
9.
Greenberg
,
M. D.
,
2015
,
Applications of Green’s Functions in Science and Engineering
,
Dover Publications
,
Mineola, NY
.
10.
Cole
,
K.
,
Beck
,
J.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2010
,
Heat Conduction Using Greens Functions
,
CRC Press
,
Boca Raton, FL
.
11.
Eshelby
,
J. D.
, and
Peierls
,
R. E.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, A
,
241
(
1226
), pp.
376
396
.
12.
Eshelby
,
J. D.
, and
Peierls
,
R. E.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, A
,
252
(
1271
), pp.
561
569
.
13.
Zhang
,
L.
,
Lin
,
Q.
,
Chen
,
F.
,
Zhang
,
Y.
, and
Yin
,
H.
,
2020
, “
Micromechanical Modeling and Experimental Characterization for the Elastoplastic Behavior of a Functionally Graded Material
,”
Int. J. Solids Struct.
,
206
, pp.
370
382
.
14.
Sakata
,
S.
,
Ashida
,
F.
, and
Kojima
,
T.
,
2010
, “
Stochastic Homogenization Analysis for Thermal Expansion Coefficients of Fiber Reinforced Composites Using the Equivalent Inclusion Method With Perturbation-Based Approach
,”
Comput. Struct.
,
88
(
7–8
), pp.
458
466
.
15.
Takei
,
T.
,
Hatta
,
H.
, and
Taya
,
M.
,
1991
, “
Thermal Expansion Behavior of Particulate-Filled Composites II: Multi-Reinforcing Phases (Hybrid Composites)
,”
Mater. Sci. Eng. A
,
131
(
1
), pp.
145
152
.
16.
Yin
,
H.
,
Paulino
,
G.
,
Buttlar
,
W.
, and
Sun
,
L.
,
2007
, “
Micromechanics-Based Thermoelastic Model for Functionally Graded Particulate Materials With Particle Interactions
,”
J. Mech. Phys. Solids
,
55
(
1
), pp.
132
160
.
17.
Hatta
,
H.
, and
Taya
,
M.
,
1986
, “
Equivalent Inclusion Method for Steady State Heat Conduction in Composites
,”
Int. J. Eng. Sci.
,
24
, pp.
1159
1170
.
18.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
,
2008
, “
Effective Thermal Conductivity of Functionally Graded Particulate Nanocomposites With Interfacial Thermal Resistance
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051113
.
19.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1986
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
Oxford, New York
.
20.
Koroteeva
,
O.
,
Mogilevskaya
,
S.
,
Crouch
,
S.
, and
Gordeliy
,
E.
,
2010
, “
A Computational Technique for Evaluating the Effective Thermal Conductivity of Isotropic Porous Materials
,”
Eng. Anal. Bound. Elem.
,
34
(
9
), pp.
793
801
.
21.
Mogilevskaya
,
S.
,
Kushch
,
V.
,
Koroteeva
,
O.
, and
Crouch
,
S.
,
2012
, “
Equivalent Inhomogeneity Method for Evaluating the Effective Conductivities of Isotropic Particulate Composites
,”
J. Mech. Mater. Struct.
,
7
(
1
), pp.
103
117
.
22.
Wu
,
C.
,
Wei
,
Z.
, and
Yin
,
H.
,
2021
, “
Virtual and Physical Experiments of Encapsulated Phase Change Material Embedded in Building Envelopes
,”
Int. J. Heat Mass Transfer
,
172
(
6
), p.
121083
.
23.
Yin
,
H.
,
Song
,
G.
,
Zhang
,
L.
, and
Wu
,
C.
,
2022
,
The Inclusion-Based Boundary Element Method
,
Academic Press
,
Cambridge, MA
.
24.
Liu
,
Y.
,
Song
,
G.
, and
Yin
,
H.
,
2015
, “
Boundary Effect on the Elastic Field of a Semi-infinite Solid Containing Inhomogeneities
,”
Proc. R. Soc. A
,
471
(
2179
), p.
20150174
.
25.
Dang
,
X.
,
Liu
,
Y.
,
Wang
,
L.
, and
Wang
,
J.
,
2019
, “
Solutions of the Elastic Fields in a Half-Plane Region Containing Multiple Inhomogeneities With the Equivalent Inclusion Method and the Applications to Properties of Composites
,”
Acta Mech.
,
230
(
5
), pp.
1529
1547
.
26.
Ostoja-Starzewski
,
M.
, and
Schulte
,
J.
,
1996
, “
Bounding of Effective Thermal Conductivities of Multiscale Materials by Essential and Natural Boundary Conditions
,”
Phys. Rev. B
,
54
(
1
), pp.
278
285
.
27.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
28.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
, 2nd ed. (
Mechanics of Elastic and Inelastic Solids
),
Springer, Netherlands
.
29.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
2013
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
Amsterdam, The Netherlands
.
30.
Willis
,
J. R.
,
1981
,
Advances in Applied Mechanics
, Vol.
21
,
C.-S.
Yih
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1
78
.
31.
Wu
,
C.
, and
Yin
,
H.
,
2021
, “
Elastic Solution of a Polygon-Shaped Inclusion With a Polynomial Eigenstrain
,”
ASME J. Appl. Mech.
,
88
(
6
), p.
061002
.
32.
Wu
,
C.
,
Zhang
,
L.
, and
Yin
,
H.
,
2021
, “
Elastic Solution of a Polyhedral Particle With a Polynomial Eigenstrain and Particle Discretization
,”
ASME J. Appl. Mech.
,
88
(
12
), p.
121001
.
33.
Liu
,
Y. J.
,
Song
,
G.
, and
Yin
,
H. M.
,
2015
, “
Boundary Effect on the Elastic Field of a Semi-infinite Solid Containing Inhomogeneities
,”
Proc. R. Soc. A
,
471
(
2179
), p.
20150174
.
34.
Walpole
,
L.
,
1997
, “
An Inclusion in One of Two Joined Isotropic Elastic Half-Spaces
,”
IMA J. Appl. Math.
,
59
(
2
), pp.
193
209
.
35.
Mindlin
,
R. D.
,
1936
, “
Force at a Point in the Interior of a Semi-Infinite Solid
,”
Physics
,
7
(
5
), pp.
195
202
.
36.
Rongved
,
L.
,
1955
, “
Force Interior to One of Two Joined Semi-Infinite Solid
,”
Proceedings of the Second Midwestern Conference on Solid Mechanics
, pp.
1
13
.
37.
Hadamard
,
J.
,
1932
,
Le Probléme De Cauchy Et Les équations Aux Dérivées Partielles Linéaires Hyperboliques
,
Hermann & Cie
,
Paris
.
38.
Zhou
,
J.
, and
Han
,
X.
,
2020
, “
Three-Dimensional Green’s Functions for Transient Heat Conduction Problems in Anisotropic Bimaterial
,”
Int. J. Heat Mass Transfer
,
146
(
4
), p.
118805
.
39.
Haberman
,
R.
,
2012
,
Applied Partial Differential Equations With Fourier Series and Boundary Value Problems
,
Addison-Wesley
,
Boston, MA
.
You do not currently have access to this content.