Abstract

The recently conceived gap test and its simulation revealed that the fracture energy Gf (or Kc, Jcr) of concrete, plastic-hardening metals, composites, and probably most materials can change by ±100%, depending on the crack-parallel stresses σxx, σzz, and their history. Therefore, one must consider not only a finite length but also a finite width of the fracture process zone, along with its tensorial damage behavior. The data from this test, along with ten other classical tests important for fracture problems (nine on concrete, one on sandstone), are optimally fitted to evaluate the performance of the state-of-art phase-field, peridynamic, and crack band models. Thanks to its realistic boundary and crack-face conditions as well as its tensorial nature, the crack band model, combined with the microplane damage constitutive law in its latest version M7, is found to fit all data well. On the contrary, the phase-field models perform poorly. Peridynamic models (both bond based and state based) perform even worse. The recent correction in the bond-associated deformation gradient helps to improve the predictions in some experiments, but not all. This confirms the previous strictly theoretical critique (JAM 2016), which showed that peridynamics of all kinds suffers from several conceptual faults: (1) It implies a lattice microstructure; (2) its particle–skipping interactions are a fiction; (4) it ignores shear-resisted particle rotations (which are what lends the lattice discrete particle model (LDPM) its superior performance); (3) its representation of the boundaries, especially the crack and fracture process zone faces, is physically unrealistic; and (5) it cannot reproduce the transitional size effect—a quintessential characteristic of quasibrittleness. The misleading practice of “verifying” a model with only one or two simple tests matchable by many different models, or showcasing an ad hoc improvement for one type of test while ignoring misfits of others, is pointed out. In closing, the ubiquity of crack-parallel stresses in practical problems of concrete, shale, fiber composites, plastic-hardening metals, and materials on submicrometer scale is emphasized.

References

1.
Francfort
,
G. A.
, and
Marigo
,
J. -J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids.
,
46
(
8
), pp.
1319
1342
.
2.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids.
,
48
(
4
), pp.
797
826
.
3.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elast.
,
91
(
1
), pp.
5
148
.
4.
Amor
,
H.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2009
, “
Regularized Formulation of the Variational Brittle Fracture With Unilateral Contact: Numerical Experiments
,”
J. Mech. Phys. Solids.
,
57
(
8
), pp.
1209
1229
.
5.
Lancioni
,
G.
, and
Royer-Carfagni
,
G.
,
2009
, “
The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris
,”
J. Elast.
,
95
(
1
), pp.
1
30
.
6.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations
,”
Int. J. Numer. Methods Eng.
,
83
(
10
), pp.
1273
1311
.
7.
Lee
,
S.
,
Wheeler
,
M. F.
, and
Wick
,
T.
,
2016
, “
Pressure and Fluid-Driven Fracture Propagation in Porous Media Using an Adaptive Finite Element Phase Field Model
,”
Comput. Methods. Appl. Mech. Eng.
,
305
(
6
), pp.
111
132
.
8.
Borden
,
M. J.
,
Hughes
,
T. J.
,
Landis
,
C. M.
,
Anvari
,
A.
, and
Lee
,
I. J.
,
2016
, “
A Phase-Field Formulation for Fracture in Ductile Materials: Finite Deformation Balance Law Derivation, Plastic Degradation, and Stress Triaxiality Effects
,”
Comput. Methods. Appl. Mech. Eng.
,
312
(
12
), pp.
130
166
.
9.
Nguyen
,
V. P.
, and
Wu
,
J. -Y.
,
2018
, “
Modeling Dynamic Fracture of Solids With a Phase-Field Regularized Cohesive Zone Model
,”
Comput. Methods. Appl. Mech. Eng.
,
340
(
10
), pp.
1000
1022
.
10.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids.
,
48
(
1
), pp.
175
209
.
11.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
(
17–18
), pp.
1526
1535
.
12.
Silling
,
S. A.
, and
Bobaru
,
F.
,
2005
, “
Peridynamic Modeling of Membranes and Fibers
,”
Int. J. Non-Linear Mech.
,
40
(
2–3
), pp.
395
409
.
13.
Silling
,
S. A.
,
Epton
,
M.
,
Weckner
,
O.
,
Xu
,
J.
, and
Askari
,
E.
,
2007
, “
Peridynamic States and Constitutive Modeling
,”
J. Elast.
,
88
(
2
), pp.
151
184
.
14.
Foster
,
J. T.
,
Silling
,
S. A.
, and
Chen
,
W.
,
2011
, “
An Energy Based Failure Criterion for Use With Peridynamic States
,”
Int. J. Multiscale Comput. Eng.
,
9
(
6
), pp.
675
688
.
15.
Diehl
,
P.
,
Lipton
,
R.
,
Wick
,
T.
, and
Tyagi
,
M.
,
2022
, “
A Comparative Review of Peridynamics and Phase-Field Models for Engineering Fracture Mechanics
,”
Comput. Mech.
,
2
, pp.
1
35
.
16.
Bažant
,
Z. P.
,
Luo
,
W.
,
Chau
,
V. T.
, and
Bessa
,
M. A.
,
2016
, “
Wave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111004
.
17.
Butt
,
S. N.
,
Timothy
,
J. J.
, and
Meschke
,
G.
,
2017
, “
Wave Dispersion and Propagation in State-Based Peridynamics
,”
Comput. Mech.
,
60
(
5
), pp.
725
738
.
18.
Silling
,
S. A.
,
2017
, “
Stability of Peridynamic Correspondence Material Models and Their Particle Discretizations
,”
Comput. Methods. Appl. Mech. Eng.
,
322
(
8
), pp.
42
57
.
19.
Breitzman
,
T.
, and
Dayal
,
K.
,
2018
, “
Bond-Level Deformation Gradients and Energy Averaging in Peridynamics
,”
J. Mech. Phys. Solids.
,
110
(
1
), pp.
192
204
.
20.
Nguyen
,
H.
,
Pathirage
,
M.
,
Rezaei
,
M.
,
Issa
,
M.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2020
, “
New Perspective of Fracture Mechanics Inspired by Gap Test With Crack-Parallel Compression
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
25
), pp.
14015
14020
.
21.
Nguyen
,
H.
,
Pathirage
,
M.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2020
, “
Gap Test of Crack-Parallel Stress Effect on Quasibrittle Fracture and Its Consequences
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071012
.
22.
Narayan
,
S.
, and
Anand
,
L.
,
2021
, “
Fracture of Amorphous Polymers: A Gradient-Damage Theory
,”
J. Mech. Phys. Solids.
,
146
(
1
), p.
104164
.
23.
Pham
,
K.
,
Ravi-Chandar
,
K.
, and
Landis
,
C.
,
2017
, “
Experimental Validation of a Phase-Field Model for Fracture
,”
Int. J. Fract.
,
205
(
1
), pp.
83
101
.
24.
Behzadinasab
,
M.
, and
Foster
,
J. T.
,
2019
, “
The Third Sandia Fracture Challenge: Peridynamic Blind Prediction of Ductile Fracture Characterization in Additively Manufactured Metal
,”
Int. J. Fract.
,
218
(
1
), pp.
97
109
.
25.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. II: Calibration and Verification
,”
ASME J. Eng. Mech.
,
139
(
12
), pp.
1724
1735
.
26.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Matériaux et Construction
,
16
(
3
), pp.
155
177
.
27.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
28.
Kirane
,
K.
,
Salviato
,
M.
, and
Bažant
,
Z. P.
,
2016
, “
Microplane-Triad Model for Elastic and Fracturing Behavior of Woven Composites
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041006
.
29.
Li
,
C.
,
Caner
,
F. C.
,
Chau
,
V. T.
, and
Bažant
,
Z. P.
,
2017
, “
Spherocylindrical Microplane Constitutive Model for Shale and Other Anisotropic Rocks
,”
J. Mech. Phys. Solids.
,
103
(
6
), pp.
155
178
.
30.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.
31.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. I: Formulation
,”
J. Eng. Mech.
,
139
(
12
), pp.
1714
1723
.
32.
Gerard
,
G.
, and
Becker
,
H.
,
1957
, “Handbook of Structural Stability: Part I, Buckling of Flat Plates,”
NACA Tech, Technical Report
, Vol.
NACA-TN-3781
,
National Advisory Committee for Aeronautics
,
United States
.
33.
Hoover
,
C.
,
Bažant
,
Z.
,
Wendner
,
R.
,
Vorel
,
J.
,
Hubler
,
M.
,
Kim
,
K.
,
Gattu
,
M.
,
Kirane
,
K.
,
Le
,
J.-L.
, and
Yu
,
Q.
,
2012
, “
Experimental Investigation of Transitional Size Effect and Crack Length Effect in Concrete Fracture
,” Life-Cycle and Sustainability of Civil Infrastructure Systems: Proceedings of the 3rd International Symposium on Life-Cycle Civil Engineering (IALCCE), Oct., pp.
3
6
.
34.
Bažant
,
Z. P.
, and
Kazemi
,
M. T.
,
1991
, “
Size Effect on Diagonal Shear Failure of Beams Without Stirrups
,”
ACI Struct. J.
,
88
(
3
), pp.
268
276
.
35.
Bažant
,
Z. P.
, and
Kazemi
,
M. T.
,
1991
, “
Size Dependence of Concrete Fracture Energy Determined by RILEM Work-of-Fracture Method
,”
Int. J. Fract.
,
51
(
2
), pp.
121
138
.
36.
Červenka
,
J.
,
Bažant
,
Z. P.
, and
Wierer
,
M.
,
2005
, “
Equivalent Localization Element for Crack Band Approach to Mesh-Sensitivity in Microplane Model
,”
Int. J. Numer. Methods Eng.
,
62
(
5
), pp.
700
726
.
37.
Nguyen
,
H. T.
,
Dönmez
,
A. A.
, and
Bažant
,
Z. P.
,
2021
, “
Structural Strength Scaling Law for Fracture of Plastic-Hardening Metals and Testing of Fracture Properties
,”
Extreme Mech. Lett.
,
43
(
2
), p.
101141
.
38.
Nakai
,
M.
, and
Itoh
,
G.
,
2014
, “
The Effect of Microstructure on Mechanical Properties of Forged 6061 Aluminum Alloy
,”
Mater. Trans.
,
55
(
1
), pp.
114
119
.
39.
Provatas
,
N.
, and
Elder
,
K.
,
2011
,
Phase-Field Methods in Materials Science and Engineering
,
John Wiley & Sons
,
New York
.
40.
Wu
,
J.-Y.
,
Huang
,
Y.
,
Zhou
,
H.
, and
Nguyen
,
V. P.
,
2021
, “
Three-Dimensional Phase-Field Modeling of Mode I+ II/III Failure in Solids
,”
Comput. Methods. Appl. Mech. Eng.
,
373
(
1
), p.
113537
.
41.
Narayan
,
S.
, and
Anand
,
L.
,
2019
, “
A Gradient-Damage Theory for Fracture of Quasi-Brittle Materials
,”
J. Mech. Phys. Solids.
,
129
(
8
), pp.
119
146
.
42.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories
(
Oxford engineering science series
),
Oxford University Press
.
43.
Bažant
,
Z. P.
, and
Tabbara
,
M. R.
,
1992
, “
Bifurcation and Stability of Structures With Interacting Propagating Cracks
,”
Int. J. Fract.
,
53
(
3
), pp.
273
289
.
44.
Madenci
,
E.
, and
Oterkus
,
E.
,
2013
,
Peridynamic Theory and Its Applications
,
Springer
,
New York
.
45.
Burt
,
N. J.
, and
Dougill
,
J. W.
,
1977
, “
Progressive Failure in a Model Heterogeneous Medium
,”
J. Eng. Mech. Div.
,
103
(
3
), pp.
365
376
.
46.
Cusatis
,
G.
,
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
2003
, “
Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory
,”
J. Eng. Mech.
,
129
(
12
), pp.
1439
1448
.
47.
Cusatis
,
G.
,
Pelessone
,
D.
, and
Mencarelli
,
A.
,
2011
, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory
,”
Cement and Concrete Composit.
,
33
(
9
), pp.
881
890
.
48.
Kirane
,
K.
,
Singh
,
K. D.
, and
Bažant
,
Z. P.
,
2016
, “
Size Effect in Torsional Strength of Plain and Reinforced Concrete.
,”
ACI Struct. J.
,
113
(
6
), pp.
1253
1262
.
49.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2013
, “
Comminution of Solids Caused by Kinetic Energy of High Shear Strain Rate, With Implications for Impact, Shock, and Shale Fracturing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
48
), pp.
19291
19294
.
50.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2014
, “
Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: I. Continuum Theory and Turbulence Analogy
,”
J. Mech. Phys. Solids.
,
64
(
3
), pp.
223
235
.
51.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2014
, “
Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: II–Microplane Model and Verification
,”
J. Mech. Phys. Solids.
,
64
(
3
), pp.
236
248
.
52.
Hobbs
,
M.
,
Dodwell
,
T.
,
Hattori
,
G.
, and
Orr
,
J.
,
2021
, “
An Examination of the Size Effect in Quasi-Brittle Materials Using a Bond-Based Peridynamic Model
,”
engrXiv
.
53.
Nguyen
,
H. T.
,
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2021
, “
Conversion of Explicit Microplane Model With Boundaries to a Constitutive Subroutine for Implicit Finite Element Programs
,”
Int. J. Numer. Methods Eng.
,
122
(
6
), pp.
1563
1577
.
54.
Navidtehrani
,
Y.
,
Betegón
,
C.
, and
Martínez-Pañeda
,
E.
,
2021
, “
A Unified Abaqus Implementation of the Phase Field Fracture Method Using Only a User Material Subroutine
,”
Materials
,
14
(
8
), p.
1913
.
55.
Navidtehrani
,
Y.
,
Betegón
,
C.
, and
Martínez-Pañeda
,
E.
,
2021
, “
A Simple and Robust Abaqus Implementation of the Phase Field Fracture Method
,”
Appl. Eng. Sci.
,
6
(
6
), p.
100050
.
56.
Parks
,
M. L.
,
Littlewood
,
D. J.
,
Mitchell
,
J. A.
, and
Silling
,
S. A.
,
2012
, “Peridigm Users’ Guide,”
Techincal Report, Report No. SAND2012-7800.
,
Sandia National Laboratories
,
NM
.
57.
Niazi
,
S.
,
Chen
,
Z.
, and
Bobaru
,
F.
,
2021
, “
Crack Nucleation in Brittle and Quasi-Brittle Materials: A Peridynamic Analysis
,”
Theor. Appl. Fract. Mec.
,
112
(
4
), p.
102855
.
58.
Wu
,
P.
,
Zhao
,
J.
,
Chen
,
Z.
, and
Bobaru
,
F.
,
2020
, “
Validation of a Stochastically Homogenized Peridynamic Model for Quasi-Static Fracture in Concrete
,”
Eng. Fract. Mech.
,
237
(
10
), p.
107293
.
59.
Wu
,
J.-Y.
,
2017
, “
A Unified Phase-Field Theory for the Mechanics of Damage and Quasi-Brittle Failure
,”
J. Mech. Phys. Solids.
,
103
(
6
), pp.
72
99
.
60.
Grassl
,
P.
,
Xenos
,
D.
,
Nyström
,
U.
,
Rempling
,
R.
, and
Gylltoft
,
K.
,
2013
, “
Cdpm2: A Damage-Plasticity Approach to Modelling the Failure of Concrete
,”
Int. J. Solids. Struct.
,
50
(
24
), pp.
3805
3816
.
61.
Grassl
,
P.
, and
Jirásek
,
M.
,
2006
, “
Damage-Plastic Model for Concrete Failure
,”
Int. J. Solids. Struct.
,
43
(
22–23
), pp.
7166
7196
.
62.
Behzadinasab
,
M.
, and
Foster
,
J. T.
,
2020
, “
A Semi-Lagrangian Constitutive Correspondence Framework for Peridynamics
,”
J. Mech. Phys. Solids.
,
137
(
4
), p.
103862
.
63.
Behzadinasab
,
M.
, and
Foster
,
J. T.
,
2020
, “
Revisiting the Third Sandia Fracture Challenge: A Bond-Associated, Semi-Lagrangian Peridynamic Approach to Modeling Large Deformation and Ductile Fracture
,”
Int. J. Fracture
,
224
(
2
), pp.
261
267
.
64.
Behzadinasab
,
M.
,
Trask
,
N.
, and
Bazilevs
,
Y.
,
2021
, “
A Unified, Stable and Accurate Meshfree Framework for Peridynamic Correspondence Modeling—Part I: Core Methods
,”
J. Peridyn. Nonlocal Model.
,
3
(
1
), pp.
24
45
.
65.
Fei
,
F.
, and
Choo
,
J.
,
2020
, “
A Phase-Field Model of Frictional Shear Fracture in Geologic Materials
,”
Comput. Methods. Appl. Mech. Eng.
,
369
(
9
), p.
113265
.
66.
Caner
,
F. C.
,
Bažant
,
Z. P.
, and
Červenka
,
J.
,
2002
, “
Vertex Effect in Strain-Softening Concrete at Rotating Principal Axes
,”
J. Eng. Mech.
,
128
(
1
), pp.
24
33
.
67.
Brocca
,
M.
, and
Bazant
,
Z. P.
,
2000
, “
Microplane Constitutive Model and Metal Plasticity
,”
ASME Appl. Mech. Rev.
,
53
(
10
), p.
265
.
68.
Schurig
,
M.
, and
Bertram
,
A.
,
2011
, “
The Torsional Buckling of a Cruciform Column Under Compressive Load With a Vertex Plasticity Model
,”
Int. J. Solids. Struct.
,
48
(
1
), pp.
1
11
.
69.
Bažant
,
Z. P.
,
1984
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
,
110
(
4
), pp.
518
535
.
70.
Bažant
,
Z. P.
, and
Pfeiffer
,
P. A.
, et al.,
1987
, “
Determination of Fracture Energy From Size Effect and Brittleness Number
,”
ACI. Mater. J.
,
84
(
6
), pp.
463
480
.
71.
Bažant
,
Z. P.
,
Le
,
J. -L.
, and
Salviato
,
M.
,
2021
,
Quasibrittle Fracture Mechanics and Size Effect: A First Course
,
Oxford University Press
,
Oxford, UK
.
72.
Luo
,
W.
,
Le
,
J.-L.
,
Rasoolinejad
,
M.
, and
Bažant
,
Z. P.
,
2021
, “
Coefficient of Variation of Shear Strength of RC Beams and Size Effect
,”
J. Eng. Mech.
,
147
(
2
), p.
04020144
.
73.
Bažant
,
Z. P.
,
Kim
,
J. -J. H.
,
Daniel
,
I. M.
,
Becq-Giraudon
,
E.
, and
Zi
,
G.
,
1999
, “
Size Effect on Compression Strength of Fiber Composites Failing by Kink Band Propagation
,”
Int. J. Fracture
,
95
(
1
), pp.
103
141
.
74.
Hoover
,
C. G.
,
Bažant
,
Z. P.
,
Vorel
,
J.
,
Wendner
,
R.
, and
Hubler
,
M. H.
,
2013
, “
Comprehensive Concrete Fracture Tests: Description and Results
,”
Eng. Fract. Mech.
,
114
(
12
), pp.
92
103
.
75.
Hoover
,
C. G.
, and
Bažant
,
Z. P.
,
2014
, “
Cohesive Crack, Size Effect, Crack Band and Work-of-Fracture Models Compared to Comprehensive Concrete Fracture Tests
,”
Int. J. Fracture
,
187
(
1
), pp.
133
143
.
76.
Grégoire
,
D.
,
Rojas-Solano
,
L. B.
, and
Pijaudier-Cabot
,
G.
,
2013
, “
Failure and Size Effect for Notched and Unnotched Concrete Beams
,”
Int. J. Numer. Anal. Methods Geomech.
,
37
(
10
), pp.
1434
1452
.
77.
Feng
,
D.-C.
, and
Wu
,
J.-Y.
,
2018
, “
Phase-Field Regularized Cohesive Zone Model (CZM) and Size Effect of Concrete
,”
Eng. Fract. Mech.
,
197
(
6
), pp.
66
79
.
78.
Bažant
,
Z. P.
, and
Estenssoro
,
L. F.
,
1979
, “
Surface Singularity and Crack Propagation
,”
Int. J. Solids. Struct.
,
15
(
5
), pp.
405
426
.
79.
Bažant
,
Z.
, and
Pfeiffer
,
P.
,
1986
, “
Shear Fracture Tests of Concrete
,”
Mater. Struct.
,
19
(
2
), pp.
111
121
.
80.
Bažant
,
Z. P.
, and
Le
,
J. -L.
,
2017
,
Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
,
Cambridge University Press
,
Cambridge, UK
.
81.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
1993
, “
Why Direct Tension Test Specimens Break Flexing to the Side
,”
J. Struct. Eng.
,
119
(
4
), pp.
1101
1113
.
82.
Bažant
,
Z. P.
,
Prat
,
P. C.
, and
Tabbara
,
M. R.
,
1990
, “
Antiplane Shear Fracture Tests (Model)
,”
ACI. Mater. J.
,
87
(
1
), pp.
12
19
.
83.
Rüsch
,
H.
, and
Hilsdorf
,
H.
,
1963
, “
Deformation Characteristics of Concrete Under Axial Tension
,”
Voruntersuchungen, Bericht
,
44
(
5
), p.
0
.
84.
Hughes
,
B.
, and
Chapman
,
G.
,
1966
, “
The Complete Stress-Strain Curve for Concrete in Direct Tension
,”
Matls & Structures, Res & Testing
,
30
(
3
), pp.
95
97
.
85.
Evans
,
R.
, and
Marathe
,
M.
,
1968
, “
Microcracking and Stress-Strain Curves for Concrete in Tension
,”
Matériaux et Construct.
,
1
(
1
), pp.
61
64
.
86.
Heilmann
,
H. G.
,
Finsterwalder
,
K.
, and
Hilsdorf
,
H. K.
,
1969
,
Festigkeit Und Verformung Von Beton Unter Zugspannungen
,
Wilhelm Ernst Verlag
,
Berlin, Germany
.
87.
Yumlu
,
M.
, and
Ozbay
,
M.
,
1995
, “
A Study of the Behaviour of Brittle Rocks Under Plane Strain and Triaxial Loading Conditions
,”
Int. J. Rock Mechanics Mining Sci. Geomech. Abst.
,
32
(
7
), pp.
725
733
.
88.
Dean
,
A.
,
Kumar
,
P. A. V.
,
Reinoso
,
J.
,
Gerendt
,
C.
,
Paggi
,
M.
,
Mahdi
,
E.
, and
Rolfes
,
R.
,
2020
, “
A Multi Phase-Field Fracture Model for Long Fiber Reinforced Composites Based on the Puck Theory of Failure
,”
Compos. Struct.
,
251
(
10
), p.
112446
.
89.
Fei
,
F.
, and
Choo
,
J.
,
2021
, “
Double-Phase-Field Formulation for Mixed-Mode Fracture in Rocks
,”
Comput. Methods. Appl. Mech. Eng.
,
376
(
4
), p.
113655
.
90.
Bažant
,
Z. P.
,
Kim
,
J. J. H.
, and
Brocca
,
M.
,
1999
, “
Finite Strain Tube-Squash Test of Concrete at High Pressures and Shear Angles Up to 70 Degrees
,”
ACI. Mater. J.
,
96
(
5
), pp.
580
592
.
91.
Bažant
,
Z. P.
,
Bishop
,
F. C.
, and
Chang
,
T. P.
,
1986
, “
Confined Compression Tests of Cement Paste and Concrete Up to 300 Ksi
,”
ACI J.
,
33
(
1986
), pp.
553
560
.
92.
Budiansky
,
B.
,
1959
, “
A Reassessment of Deformation Theories of Plasticity
,”
J. Appl. Mech.
,
26
(
2
), pp.
259
264
.
93.
Jirásek
,
M.
, and
Bažant
,
Z. P.
,
2001
,
Inelastic Analysis of Structures
,
John Wiley & Sons
,
Chichester, UK
.
94.
Yu
,
Q.
,
Le
,
J.-L.
,
Hubler
,
M. H.
,
Wendner
,
R.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2016
, “
Comparison of Main Models for Size Effect on Shear Strength of Reinforced and Prestressed Concrete Beams
,”
Struct. Concrete
,
17
(
5
), pp.
778
789
.
95.
Dönmez
,
A.
, and
Bažant
,
Z. P.
,
2019
, “
Critique of Critical Shear Crack Theory for Fib Model Code Articles on Shear Strength and Size Effect of Reinforced Concrete Beams
,”
Struct. Concrete
,
20
(
4
), pp.
1451
1463
.
96.
Reineck
,
K.-H.
,
Kuchma
,
D. A.
,
Kim
,
K. S.
, and
Marx
,
S.
,
2003
, “
Shear Database for Reinforced Concrete Members Without Shear Reinforcement
,”
Struct. J.
,
100
(
2
), pp.
240
249
.
97.
Syroka-Korol
,
E.
, and
Tejchman
,
J.
,
2014
, “
Experimental Investigations of Size Effect in Reinforced Concrete Beams Failing by Shear
,”
Eng. Struct.
,
58
(
1
), pp.
63
78
.
98.
Dönmez
,
A.
, and
Bažant
,
Z. P.
,
2017
, “
Size Effect on Punching Strength of Reinforced Concrete Slabs With and Without Shear Reinforcement
,”
ACI Struct. J.
,
114
(
4
), p.
875
.
99.
Marti
,
Z. P.
, et al.,
1989
, “
Size Effect in Double-Punch Tests on Concrete Cylinders
,”
ACI. Mater. J.
,
86
(
6
), pp.
597
601
.
100.
Bažant
,
Z. P.
,
1976
, “
Instability, Ductility, and Size Effect in Strain-Softening Concrete
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
331
344
.
101.
Bažant
,
Z. P.
,
Dönmez
,
A. A.
, and
Nguyen
,
H. T.
,
2022
, “
Précis of Gap Test Results Requiring Reappraisal of Line Crack and Phase-Field Models of Fracture Mechanics
,”
Eng. Struct.
,
250
(
1
), p.
113285
.
102.
Mandal
,
T. K.
,
Nguyen
,
V. P.
, and
Wu
,
J. -Y.
,
2019
, “
Length Scale and Mesh Bias Sensitivity of Phase-Field Models for Brittle and Cohesive Fracture
,”
Eng. Fract. Mech.
,
217
(
8
), p.
106532
.
103.
Cusatis
,
G.
,
Mencarelli
,
A.
,
Pelessone
,
D.
, and
Baylot
,
J.
,
2011
, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation
,”
Cement Concrete Composites
,
33
(
9
), pp.
891
905
.
104.
Behzadinasab
,
M.
, and
Foster
,
J. T.
,
2020
, “
On the Stability of the Generalized, Finite Deformation Correspondence Model of Peridynamics
,”
Int. J. Solids. Struct.
,
182
(
1
), pp.
64
76
.
105.
Bažant
,
Z. P.
,
1984
, “Microplane Model for Strain-Controlled Inelastic Behaviour,”
Mech. Eng. Mater.
,
C. S.
Desai
and
R. H.
Gallagher
,
John Wiley
,
London
, Vol.1, pp.
45
59
.
106.
Koiter
,
W. T.
,
1953
, “
Stress-Strain Relations, Uniqueness and Variational Theorems for Elastic-Plastic Materials With a Singular Yield Surface
,”
Q. Appl. Math.
,
11
(
3
), pp.
350
354
.
107.
Koiter
,
W.
,
1960
,
General Theorems for Elastic-Plastic Solids
,
North-Holland
,
Netherlands
.
108.
Phillips
,
A.
,
Tang
,
J.-L.
, and
Ricciuti
,
M.
,
1974
, “
Some New Observations on Yield Surfaces
,”
Acta Mech.
,
20
(
1
), pp.
23
39
.
109.
Bažant
,
Z. P.
,
1978
, “
Endochronic Inelasticity and Incremental Plasticity
,”
Int. J. Solids. Struct.
,
14
(
9
), pp.
691
714
.
110.
Kirane
,
K.
, and
Bažant
,
Z. P.
,
2015
, “
Microplane Damage Model for Fatigue of Quasibrittle Materials: Sub-Critical Crack Growth, Lifetime and Residual Strength
,”
Int. J. Fatigue.
,
70
(
1
), pp.
93
105
.
111.
Zhang
,
G.
,
2017
, “Peridynamic Models for Fatigue and Fracture in Isotropic and in Polycrystalline Materials,”
Doctoral thesis
,
The University of Nebraska-Lincoln
,
Lincoln, NE
.
112.
Dönmez
,
A.
, and
Bažant
,
Z. P.
,
2020
, “
Size Effect on Branched Sideways Cracks in Orthotropic Fiber Composites
,”
Int. J. Fracture
,
222
(
1
), pp.
155
169
.
113.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
You do not currently have access to this content.