Abstract

Electrolyte in a rechargeable Li-ion battery plays a critical role in determining its capacity and efficiency. While the typically used electrolytes in Li-ion batteries are liquid, soft solid electrolytes are being increasingly explored as an alternative due to their advantages in terms of increased stability, safety and potential applications in the context of flexible and stretchable electronics. However, ionic conductivity of solid polymer electrolytes is significantly lower compared to liquid electrolytes. In a recent work, we developed a theoretical framework to model the coupled deformation, electrostatics and diffusion in heterogeneous electrolytes and also established a simple homogenization approach for the design of microstructures to enhance ionic conductivity of composite solid electrolytes. Guided by the insights from the theoretical framework, in this paper, we examine specific microstructures that can potentially yield significant improvement in the effective ionic conductivity. We numerically implement our theory in the open source general purpose finite element package FEniCS to solve the governing equations and present numerical solutions and insights on the effect of microstructure on the enhancement of ionic conductivity. Specifically, we investigate the effect of shape by considering ellipsoidal inclusions. We also propose an easily manufacturable microstructure that increases the ionic conductivity of the composite electrolyte by 40 times, simply by the addition of dielectric columns parallel to the solid electrolyte phase.

References

1.
Chu
,
S.
, and
Majumdar
,
A.
,
2012
, “
Opportunities and Challenges for a Sustainable Energy Future
,”
Nature
,
488
(
7411
), pp.
294
303
.
2.
Zito
,
R.
, and
Ardebili
,
H.
,
2019
,
Energy Storage: A New Approach
, 2nd ed.,
Wiley-Scrivener
,
Beverly, MA
.
3.
Kasavajjula
,
U.
,
Wang
,
C.
, and
Appleby
,
A. J.
,
2007
, “
Nano-and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells
,”
J. Power Sources
,
163
(
2
), pp.
1003
1039
.
4.
Prosini
,
P. P.
,
Lisi
,
M.
,
Zane
,
D.
, and
Pasquali
,
M.
,
2002
, “
Determination of the Chemical Diffusion Coefficient of Lithium in Lifepo4
,”
Solid State Ionics
,
148
(
1–2
), pp.
45
51
.
5.
Goodenough
,
J. B.
, and
Park
,
K.-S.
,
2013
, “
The Li-Ion Rechargeable Battery: A Perspective
,”
J. Am. Chem. Soc.
,
135
(
4
), pp.
1167
1176
.
6.
Winter
,
M.
, and
Besenhard
,
J. O.
,
1999
, “
Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites
,”
Electrochim. Acta
,
45
(
1–2
), pp.
31
50
.
7.
Lukatskaya
,
M. R.
,
Dunn
,
B.
, and
Gogotsi
,
Y.
,
2016
, “
Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage
,”
Nat. Commun.
,
7
(
1
), pp.
1
13
.
8.
Xu
,
K.
,
2014
, “
Electrolytes and Interphases in Li-Ion Batteries and Beyond
,”
Chem. Rev.
,
114
(
23
), pp.
11503
11618
.
9.
Kumar
,
S. A.
, and
Kuppusami
,
P.
,
2020
, “Enhancing the Ionic Conductivity in the Ceria-Based Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells,”
Intermediate Temperature Solid Oxide Fuel Cells
,
Elsevier
, pp.
113
163
.
10.
Xu
,
K.
,
2004
, “
Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
,”
Chem. Rev.
,
104
(
10
), pp.
4303
4418
.
11.
Zhang
,
H.
,
Li
,
C.
,
Piszcz
,
M.
,
Coya
,
E.
,
Rojo
,
T.
,
Rodriguez-Martinez
,
L. M.
,
Armand
,
M.
, and
Zhou
,
Z.
,
2017
, “
Single Lithium-Ion Conducting Solid Polymer Electrolytes: Advances and Perspectives
,”
Chem. Soc. Rev.
,
46
(
3
), pp.
797
815
.
12.
Kim
,
H.
,
Jeong
,
G.
,
Kim
,
Y.-U.
,
Kim
,
J.-H.
,
Park
,
C.-M.
, and
Sohn
,
H.-J.
,
2013
, “
Metallic Anodes for Next Generation Secondary Batteries
,”
Chem. Soc. Rev.
,
42
(
23
), pp.
9011
9034
.
13.
Aurbach
,
D.
,
Zinigrad
,
E.
,
Cohen
,
Y.
, and
Teller
,
H.
,
2002
, “
A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions
,”
Solid State Ionics
,
148
(
3–4
), pp.
405
416
.
14.
Tan
,
S.-J.
,
Zeng
,
X.-X.
,
Ma
,
Q.
,
Wu
,
X.-W.
, and
Guo
,
Y.-G.
,
2018
, “
Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries
,”
Electrochem. Energy Rev.
,
1
(
2
), pp.
113
138
.
15.
Xu
,
S.
,
Zhang
,
Y.
,
Cho
,
J.
,
Lee
,
J.
,
Huang
,
X.
,
Jia
,
L.
, and
Fan
,
J. A.
, et al.,
2013
, “
Stretchable Batteries with Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,”
Nat. Commun.
,
4
(
1
), pp.
1
8
.
16.
Kammoun
,
M.
,
Berg
,
S.
, and
Ardebili
,
H.
,
2016
, “
Stretchable Spiral Thin-Film Battery Capable of Out-of-Plane Deformation
,”
J. Power Sources
,
332
, pp.
406
412
.
17.
Ghadi
,
B. M.
,
Yuan
,
M.
, and
Ardebili
,
H.
,
2019
, “
Stretchable Fabric-Based Licoo2, Electrode for Lithium Ion Batteries
,”
Extreme Mech. Lett.
,
32
(
7
), p.
100532
.
18.
Ardebili
,
H.
,
2020
, “
A Perspective on the Mechanics Issues in Soft Solid Electrolytes and the Development of Next-generation Batteries
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
040801
.
19.
Tang
,
C.
,
Hackenberg
,
K.
,
Fu
,
Q.
,
Ajayan
,
P. M.
, and
Ardebili
,
H.
,
2012
, “
High Ion Conducting Polymer Nanocomposite Electrolytes Using Hybrid Nanofillers
,”
Nano Lett.
,
12
(
3
), pp.
1152
1156
.
20.
Li
,
Q.
,
Wood
,
E.
, and
Ardebili
,
H.
,
2013
, “
Elucidating the Mechanisms of Ion Conductivity Enhancement in Polymer Nanocomposite Electrolytes for Lithium Ion Batteries
,”
Appl. Phys. Lett.
,
102
(
24
), p.
243903
.
21.
MacGlashan
,
G. S.
,
Andreev
,
Y. G.
, and
Bruce
,
P. G.
,
1999
, “
Structure of the Polymer Electrolyte Poly (ethylene Oxide) 6: Liasf 6
,”
Nature
,
398
(
6730
), pp.
792
794
.
22.
Johan
,
M. R.
,
Shy
,
O. H.
,
Ibrahim
,
S.
,
Yassin
,
S. M. M.
, and
Hui
,
T. Y.
,
2011
, “
Effects of Al2O3 Nanofiller and Ec Plasticizer on the Ionic Conductivity Enhancement of Solid PEO-LiCF3SO3 Solid Polymer Electrolyte
,”
Solid State Ionics
,
196
(
1
), pp.
41
47
.
23.
Hirankumar
,
G.
, and
Mehta
,
N.
,
2018
, “
Effect of Incorporation of Different Plasticizers on Structural and Ion Transport Properties of PVA-LiClO4 Based Electrolytes
,”
Heliyon
,
4
(
12
), p.
e00992
.
24.
Upadhyay
,
A. K.
, and
Reddy
,
C. C.
,
2017
, “
On the Mechanism of Charge Transport in Low Density Polyethylene
,”
J. Appl. Phys.
,
122
(
6
), p.
064105
.
25.
Zhang
,
S.
,
Li
,
Z.
,
Guo
,
Y.
,
Cai
,
L.
,
Manikandan
,
P.
,
Zhao
,
K.
,
Li
,
Y.
, and
Pol
,
V. G.
,
2020
, “
Room-Temperature, High-Voltage Solid-State Lithium Battery with Composite Solid Polymer Electrolyte With In-Situ Thermal Safety Study
,”
Chem. Eng. J.
,
400
, p.
125996
.
26.
Liu
,
W.
,
Liu
,
N.
,
Sun
,
J.
,
Hsu
,
P.-C.
,
Li
,
Y.
,
Lee
,
H.-W.
, and
Cui
,
Y.
,
2015
, “
Ionic Conductivity Enhancement of Polymer Electrolytes With Ceramic Nanowire Fillers
,”
Nano Lett.
,
15
(
4
), pp.
2740
2745
.
27.
Wang
,
Y.-J.
,
Pan
,
Y.
, and
Kim
,
D.
,
2006
, “
Conductivity Studies on Ceramic Li1. 3Al0. 3Ti1. 7 (PO4) 3-Filled Peo-Based Solid Composite Polymer Electrolytes
,”
J. Power Sources
,
159
(
1
), pp.
690
701
.
28.
Croce
,
F.
,
Appetecchi
,
G. B.
,
Persi
,
L.
, and
Scrosati
,
B.
,
1998
, “
Nanocomposite Polymer Electrolytes for Lithium Batteries
,”
Nature
,
394
(
6692
), pp.
456
458
.
29.
Weston
,
J. E.
, and
Steele
,
B. C. H.
,
1982
, “
Effects of Inert Fillers on the Mechanical and Electrochemical Properties of Lithium Salt-Poly (Ethylene Oxide) Polymer Electrolytes
,”
Solid State Ionics
,
7
(
1
), pp.
75
79
.
30.
Liang
,
G.
,
Xu
,
J.
,
Xu
,
W.
,
Shen
,
X.
,
Zhang
,
H.
, and
Yao
,
M.
,
2011
, “
Effect of Filler-Polymer Interactions on the Crystalline Morphology of Peo-Based Solid Polymer Electrolytes by Y2o3 Nano-Fillers
,”
Polym. Compos.
,
32
(
4
), pp.
511
518
.
31.
Dirican
,
M.
,
Yan
,
C.
,
Zhu
,
P.
, and
Zhang
,
X.
,
2019
, “
Composite Solid Electrolytes for All-Solid-State Lithium Batteries
,”
Mater. Sci. Eng.: R: Rep.
,
136
, pp.
27
46
.
32.
Larcht’e
,
F. C.
, and
Cahn
,
J. L.
,
1982
, “
The Effect of Self-Stress on Diffusion in Solids
,”
Acta Metall.
,
30
(
10
), pp.
1835
1845
.
33.
Kelly
,
T.
,
Moradi Ghadi
,
B.
,
Berg
,
S.
, and
Ardebili
,
H.
,
2016
, “
In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte
,”
Sci. Rep.
,
6
(
1
), pp.
1
9
.
34.
Mozaffari
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2021
, “
Theory of Soft Solid Electrolytes: Overall Properties of Composite Electrolytes, Effect of Deformation and Microstructural Design for Enhanced Ionic Conductivity
,”
J. Mech. Phys. Solids
,
158
(
4
), p.
104621
.
35.
Xiao
,
Y.
, and
Bhattacharya
,
K.
,
2008
, “
A Continuum Theory of Deformable, Semiconducting Ferroelectrics
,”
Arch. Ration. Mech. Anal.
,
189
(
1
), pp.
59
95
.
36.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Large Deformation and Electrochemistry of Polyelectrolyte Gels
,”
J. Mech. Phys. Solids
,
58
(
4
), pp.
558
577
.
37.
Wang
,
X.
, and
Hong
,
W.
,
2011
, “
Theory of Ionic Polymer Conductor Network Composite
,”
Appl. Phys. Lett.
,
98
(
8
), p.
081910
.
38.
Rejovitzky
,
E.
,
Di Leo
,
C. V.
, and
Anand
,
L.
,
2015
, “
A Theory and a Simulation Capability for the Growth of a Solid Electrolyte Interphase Layer At An Anode Particle in a Li-Ion Battery
,”
J. Mech. Phys. Solids
,
78
, pp.
210
230
.
39.
Grazioli
,
D.
,
Verners
,
O.
,
Zadin
,
V.
,
Brandell
,
D.
, and
Simone
,
A.
,
2019
, “
Electrochemical-Mechanical Modeling of Solid Polymer Electrolytes: Impact of Mechanical Stresses on Li-Ion Battery Performance
,”
Electrochim. Acta
,
296
(
8
), pp.
1122
1141
.
40.
Zhang
,
H.
,
Dehghany
,
M.
, and
Hu
,
Y.
,
2020
, “
Kinetics of Polyelectrolyte Gels
,”
ASME J. Appl. Mech.
,
87
(
6
), p.
061010
.
41.
Ganser
,
M.
,
Hildebrand
,
F. E.
,
Kamlah
,
M.
, and
McMeeking
,
M.
,
2019
, “
A Finite Strain Electro-Chemo-Mechanical Theory for Ion Transport With Application to Binary Solid Electrolytes
,”
J. Mech. Phys. Solids
,
125
(
1
), pp.
681
713
.
42.
Narayan
,
S.
,
Stewart
,
E. M.
, and
Anand
,
L.
,
2021
, “
Coupled Electro-Chemo-Elasticity: Application to Modeling the Actuation Response of Ionic Polymer–Metal Composites
,”
J. Mech. Phys. Solids
,
152
(
4
), p.
104394
.
43.
Marshall
,
J.
, and
Dayal
,
K.
,
2014
, “
Atomistic-to-Continuum Multiscale Modeling With Long-Range Electrostatic Interactions in Ionic Solids
,”
J. Mech. Phys. Solids
,
62
(
6
), pp.
137
162
.
44.
Li
,
Q.
, and
Ardebili
,
H.
,
2014
, “
Atomistic Investigation of the Nanoparticle Size and Shape Effects on Ionic Conductivity of Solid Polymer Electrolytes
,”
Solid State Ionics
,
268
, pp.
156
161
.
45.
Sillamoni
,
I. J. C.
, and
Idiart
,
M. I.
,
2015
, “
A Model Problem Concerning Ionic Transport in Microstructured Solid Electrolytes
,”
Continuum Mech. Thermodyn.
,
27
(
6
), pp.
941
957
.
46.
Liu
,
L.
, and
Sharma
,
P.
,
2018
, “
Emergent Electromechanical Coupling of Electrets and Some Exact Relations–the Effective Properties of Soft Materials with Embedded External Charges and Dipoles
,”
J. Mech. Phys. Solids
,
112
(
6
), pp.
1
24
.
47.
Rahmati
,
A. H.
,
Yang
,
S.
,
Bauer
,
S.
, and
Sharma
,
P.
,
2019
, “
Nonlinear Bending Deformation of Soft Electrets and Prospects for Engineering Flexoelectricity and Transverse (d 31) Piezoelectricity
,”
Soft Matter
,
15
(
1
), pp.
127
148
.
48.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Electrets in Soft Materials: Nonlinearity, Size Effects, and Giant Electromechanical Coupling
,”
Phys. Rev. E
,
90
(
1
), p.
012603
.
49.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.
50.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/interface Energies
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
663
671
.
51.
Mozaffari
,
K.
,
Yang
,
S.
, and
Sharma
,
P.
,
2020
, “Surface Energy and Nanoscale Mechanics,”
Handbook of Materials Modeling: Applications: Current and Emerging Materials
,
W.
Andreoni
and
S.
Yip
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
1949
1974
.
52.
Sharma
,
P.
,
2004
, “
Size-Dependent Elastic Fields of Embedded Inclusions in Isotropic Chiral Solids
,”
Int. J. Solids Struct.
,
41
(
22–23
), pp.
6317
6333
.
53.
Zhang
,
X.
, and
Sharma
,
P.
,
2005
, “
Inclusions and Inhomogeneities in Strain Gradient Elasticity With Couple Stresses and Related Problems
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3833
3851
.
54.
Natarajan
,
S.
, and
Annabattula
,
R. K.
,
2019
, “
A Fenics Implementation of the Phase Field Method for Quasi-Static Brittle Fracture
,”
Front. Struct. Civ. Eng.
,
13
(
2
), pp.
380
396
.
55.
Siekierski
,
M.
,
Wieczorek
,
W.
, and
Nadara
,
K.
,
2007
, “
Mesoscale Models of Conductivity in Polymeric Electrolytes–A Comparative Study
,”
Electrochim. Acta
,
53
(
4
), pp.
1556
1567
.
56.
Dasgupta
,
A.
,
Sharma
,
P.
, and
Upadhyayula
,
K.
,
2001
, “
Micro-Mechanics of Fatigue Damage in Pb-Sn Solder Due to Vibration and Thermal Cycling
,”
Int. J. Damage Mech.
,
10
(
2
), pp.
101
132
.
You do not currently have access to this content.