Abstract

Thin-walled corrugated tubes that have a bending multistability, such as the bendy straw, allow for variable orientations over the tube length. Compared to the long history of corrugated tubes in practical applications, the mechanics of the bending stability and how it is affected by the cross sections and other geometric parameters remain unknown. To explore the geometry-driven bending stabilities, we used several tools, including a reduced-order simulation package, a simplified linkage model, and physical prototypes. We found the bending stability of a circular two-unit corrugated tube is dependent on the longitudinal geometry and the stiffness of the crease lines that connect separate frusta. Thinner shells, steeper cones, and weaker creases are required to achieve bending bi-stability. We then explored how the bending stability changes as the cross section becomes elongated or distorted with concavity. We found the bending bi-stability is favored by deep and convex cross sections, while wider cross sections with a large concavity remain mono-stable. The different geometries influence the amounts of stretching and bending energy associated with bending the tube. The stretching energy has a bi-stable profile and can allow for a stable bent configuration, but it is counteracted by the bending energy which increases monotonically. The findings from this work can enable informed design of corrugated tube systems with desired bending stability behavior.

References

1.
Sachse
,
R.
,
Westermeier
,
A.
,
Mylo
,
M.
,
Nadasdi
,
J.
,
Bischoff
,
M.
,
Speck
,
T.
, and
Poppinga
,
S.
,
2020
, “
Snapping Mechanics of the Venus Flytrap (Dionaea Muscipula)
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
27
), pp.
16035
16042
.
2.
Bende
,
N. P.
,
Evans
,
A. A.
,
Innes-Gold
,
S.
,
Marin
,
L. A.
,
Cohen
,
I.
,
Hayward
,
R. C.
, and
Santangelo
,
C. D.
,
2015
, “
Geometrically Controlled Snapping Transitions in Shells With Curved Creases
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
36
), pp.
11175
11180
.
3.
Shim
,
J.
,
Perdigou
,
C.
,
Chen
,
E. R.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2012
, “
Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
16
), pp.
5978
5983
.
4.
Reid
,
A.
,
Lechenault
,
F.
,
Rica
,
S.
, and
Adda-Bedia
,
M.
,
2017
, “
Geometry and Design of Origami Bellows With Tunable Response
,”
Phys. Rev. E
,
95
(
1
), p.
13002
.
5.
Li
,
B.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft. Matter
,
8
(
21
), pp.
5728
5745
.
6.
Hu
,
N.
, and
Burgueño
,
R.
,
2015
, “
Buckling-induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), p.
63001
.
7.
Zhang
,
B.
,
2017
, “Bistable and Multi-Stable Thin-Walled Structures,” Ph.D. thesis,
University of Oxford
,
Oxford, UK
.
8.
Shandro
,
J.
,
1982
, “
A Coaxial Circle Circuit: Comparison With Conventional Circle and Bain Circuit
,”
Can. Anaesth. Soc. J.
,
29
(
2
), pp.
121
125
.
9.
Garg
,
R.
,
2009
, “
Kinked Inner Tube of Coaxial Bain Circuit-Need for Corrugated Inner Tube
,”
J. Anesth.
,
23
(
2
), p.
306
.
10.
Bardi
,
F. C.
,
Tang
,
H.
,
Kulkarni
,
M.
, and
Yin
,
X.
,
2011
, “
Structural Analysis of Cryogenic Flexible Hose
,”
ASME 30th International Conference on Ocean, Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
,
June 19–24
, ASME, pp.
593
606
.
11.
Márquez
,
A.
,
Fazzini
,
P. G.
, and
Otegui
,
J. L.
,
2009
, “
Failure Analysis of Flexible Metal Hose At Compressor Discharge
,”
Eng. Failure Anal.
,
16
(
6
), pp.
1912
1921
.
12.
Francis
,
K. C.
,
Rupert
,
L. T.
,
Lang
,
R. J.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference, Volume 5B: 38th Mechanisms and Robotics Conference
,
Buffalo, NY
,
Aug. 17–20
, p.
V05BT08A030
.
13.
Pan
,
F.
,
Li
,
Y.
,
Li
,
Z.
,
Yang
,
J.
,
Liu
,
B.
, and
Chen
,
Y.
,
2019
, “
3d Pixel Mechanical Metamaterials
,”
Adv. Mater.
,
31
(
25
), p.
1900548
.
14.
Ni
,
B.
, and
Gao
,
H.
,
2019
, “
Engineer Energy Dissipation in 3D Graphene Nanolattice Via Reversible Snap-Through Instability
,”
J. Appl. Mech.
,
87
(
3
), p.
031012
.
15.
du Pasquier
,
C.
,
Chen
,
T.
,
Tibbits
,
S.
, and
Shea
,
K.
,
2019
, “
Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics
,”
Soft Rob.
,
6
(
5
), pp.
657
663
.
16.
Liu
,
Y.
,
Pan
,
F.
,
Ding
,
B.
,
Zhu
,
Y.
,
Yang
,
K.
, and
Chen
,
Y.
,
2022
, “
Multistable Shape-reconfigurable Metawire in 3D Space
,”
Extreme Mech. Lett.
,
50
, p.
101535
.
17.
Friedman
,
J. B.
,
1951
, Flexible Drinking Straw, May 1. US Patent.
18.
Bende
,
N. P.
,
Yu
,
T.
,
Corbin
,
N. A.
,
Dias
,
M. A.
,
Santangelo
,
C. D.
,
Hanna
,
J. A.
, and
Hayward
,
R. C.
,
2018
, “
Overcurvature Induced Multistability of Linked Conical Frusta: How a ‘bendy Straw’ Holds Its Shape
,”
Soft. Matter.
,
14
(
42
), pp.
8636
8642
.
19.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “Origami folding: A structural engineering approach.”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yims
, eds.
CRC Press
,
New York
, pp.
291
303
.
20.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids. Struct.
,
124
, pp.
26
45
.
21.
Liu
,
K.
, and
Paulino
,
G. H.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
473
(
2206
), p.
20170348
.
22.
Woodruff
,
S. R.
, and
Filipov
,
E. T.
,
2021
, “
Curved Creases Redistribute Global Bending Stiffness in Corrugations: Theory and Experimentation
,”
Meccanica
,
56
(
6
), pp.
1613
1634
.
23.
Woodruff
,
S. R.
, and
Filipov
,
E. T.
,
2020
, “
A Bar and Hinge Model Formulation for Structural Analysis of Curved-Crease Origami
,”
Int. J. Solids. Struct.
,
204–205
, pp.
114
127
.
24.
Lestringant
,
C.
,
Maurini
,
C.
,
Lazarus
,
A.
, and
Audoly
,
B.
,
2017
, “
Buckling of An Elastic Ridge: Competition Between Wrinkles and Creases
,”
Phys. Rev. Lett.
,
118
(
16
), p.
165501
.
25.
Lechenault
,
F.
,
Thiria
,
B.
, and
Adda-Bedia
,
M.
,
2014
, “
Mechanical Response of a Creased Sheet
,”
Phys. Rev. Lett.
,
112
(
24
), p.
244301
.
26.
ABAQUS
,
2010
. Abaqus FEA, Version 6.10 Documentation.
27.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids. Struct.
,
15
(
7
), pp.
529
551
.
28.
Leon
,
S. E.
,
Lages
,
E. N.
,
de Araújo
,
C. N.
, and
Paulino
,
G. H.
,
2014
, “
On the Effect of Constraint Parameters on the Generalized Displacement Control Method
,”
Mech. Res. Commun.
,
56
, pp.
123
129
.
You do not currently have access to this content.