Abstract

Conventional implementation of slider-crank mechanisms result in high loads transmitted through the mechanical structure, inhibiting the design of compact and oil-free machines. Therefore, this research proposes to step away from the conventional, i.e., rotative, actuation and to investigate local linear actuation on the slider-component directly, while maintaining the kinematic link of the slider-crank configuration. In this work, the local linear actuating principle is evaluated experimentally where the goal is to obtain a continuous movement of the slider mechanism where Top Dead Center & Bottom Dead Center are reached and to minimize the loads transmitted through the mechanical structure. The non-isochronous transient behavior of a slider-crank mechanism loaded with a spring-damper element is detailed as well as the optimal working conditions at steady-state to achieve a reduced loading of the kinematic structure. By matching the operating frequency and resonance frequency of the system, a reduction of the loads transmitted through the system by 63% of the nominal spring load can be achieved. Further experimental (and multibody mechanical) investigation on the influence of flywheel exposes a clear trade-off between the sensitivity of the system and the transmission of the actuation force through the kinematic link.

References

1.
Hartenberg
,
R.
, and
Danavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
New York
,
McGraw-Hill
.
2.
Liang
,
K.
,
Stone
,
R.
,
Hancock
,
W.
,
Dadd
,
M.
, and
Bailey
,
P.
,
2014
, “
Comparison Between a Crank-Drive Reciprocating Compressor and a Novel Oil-Free Linear Compressor
,”
Int. J. Refrig.
,
45
(
1
), pp.
25
34
.
3.
Bailey
,
P.
,
Dadd
,
M.
, and
Stone
,
C.
,
2009
, “
An Oil-Free Linear Compressor for Use With Compact Heat Exchangers
,”
International Conference on Compressors and Their Systems
, pp.
259
268
.
4.
Varedi
,
S.
,
Daniali
,
H.
,
Dardel
,
M.
, and
Fathi
,
A.
,
2015
, “
Optimal Dynamic Design of a Planar Slider-Crank Mechanism With a Joint Clearance
,”
Mech. Mach. Theory.
,
86
(
1
), pp.
191
200
.
5.
Zhao
,
B.
,
Zhou
,
K.
, and
Xie
,
Y.-B.
,
2016
, “
A New Numerical Method for Planar Multibody System With Mixed Lubricated Revolute Joint
,”
Int. J. Mech. Sci.
,
113
(
1
), pp.
105
119
.
6.
Yaqubi
,
S.
,
Dardel
,
M.
, and
Daniali
,
H. M.
,
2016
, “
Nonlinear Dynamics and Control of Crank–Slider Mechanism With Link Flexibility and Joint Clearance
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
5
), pp.
737
755
.
7.
Akbari
,
S.
,
Fallahi
,
F.
, and
Pirbodaghi
,
T.
,
2016
, “
Dynamic Analysis and Controller Design for a Slider–Crank Mechanism With Piezoelectric Actuators
,”
J. Comput. Design Eng.
,
3
(
4
), pp.
312
321
.
8.
Yan
,
H.-S.
, and
Chen
,
W.-R.
,
2000
, “
On the Output Motion Characteristics of Variable Input Speed Servo-Controlled Slider-Crank Mechanisms
,”
Mech. Mach. Theory.
,
35
(
4
), pp.
541
561
.
9.
Wang
,
X.
,
Ma
,
Q.
, and
Zhu
,
Z.
,
2007
, “
Low Noise Control of Servo Press
,”
IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society
, pp.
833
838
.
10.
Ha
,
J.-L.
,
Fung
,
R.-F.
,
Chen
,
K.-Y.
, and
Hsien
,
S.-C.
,
2006
, “
Dynamic Modeling and Identification of a Slider-Crank Mechanism
,”
J. Sound. Vib.
,
289
(
4
), pp.
1019
1044
.
11.
Shoup
,
T. E.
,
1984
, “
The Design of An Adjustable, Three Dimensional Slider Crank Mechanism
,”
Mech. Mach. Theory.
,
19
(
1
), pp.
107
111
.
12.
Kay
,
F. J.
, and
Haws
,
R. E.
,
1975
, “
Adjustable Mechanisms for Exact Path Generation
,”
J. Eng. Ind.
,
97
(
2
), pp.
702
707
.
13.
Zhou
,
H.
, and
Ting
,
K.-L.
,
2002
, “
Adjustable Slider-Crank Linkages for Multiple Path Generation
,”
Mech. Mach. Theory.
,
37
(
5
), pp.
499
509
.
14.
Shao
,
Y.
,
Zhang
,
W.
,
Su
,
Y.
, and
Ding
,
X.
,
2021
, “
Design and Optimisation of Load-Adaptive Actuator With Variable Stiffness for Compact Ankle Exoskeleton
,”
Mech. Mach. Theory
,
161
(
1
), p.
104323
.
15.
Sarigecili
,
M. I.
, and
Akcali
,
I. D.
,
2019
, “
Development of Constant Output-Input Force Ratio in Slider–Crank Mechanisms
,”
Inverse Prob. Sci. Eng.
,
27
(
5
), pp.
565
588
.
16.
Soong
,
R.-C.
,
2012
, “
A Design Approach for Flexible Linkage Mechanisms With a Rotational and a Linear Input
,”
Adv. Sci. Lett.
,
9
(
1
), pp.
499
504
.
17.
Soong
,
R.-C.
,
2014
, “
The New Hybrid-Driven Mechanical Presses
,”
J. Vibroeng.
,
16
(
2
), pp.
945
953
.
18.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
.
19.
Bai
,
L.
,
Wan
,
H.
,
Chen
,
X.
,
Zheng
,
J.
,
Xin
,
L.
,
Deng
,
Y.
, and
Sun
,
Y.
,
2021
, “
Design and Experiment of a Deformable Bird-Inspired UAV Perching Mechanism
,”
J. Bionic Eng.
,
59
(
1
), pp.
1
13
.
20.
Chi
,
W.
,
Low
,
K. H.
,
Hoon
,
K. H.
, and
Tang
,
J.
,
2014
, “
An Optimized Perching Mechanism for Autonomous Perching With a Quadrotor
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
3109
3115
.
21.
Beckers
,
J.
,
Verstraten
,
T.
,
Verrelst
,
B.
,
Contino
,
F.
, and
Van Mierlo
,
J.
,
2021
, “
Analysis of the Dynamics of a Slider-Crank Mechanism Locally Actuated With An Act-and-Wait Controller
,”
Mech. Mach. Theory
,
159
(
1
), p.
104253
.
22.
Liang
,
K.
,
2017
, “
A Review of Linear Compressors for Refrigeration
,”
Int. J. Refrige.-Revue Int. Du Froid
,
84
(
1
), pp.
253
273
.
23.
Beckers
,
J.
,
Coppitters
,
D.
,
De Paepe
,
W.
,
Contino
,
F.
,
Van Mierlo
,
J.
, and
Verrelst
,
B.
,
2020
, “
Multi-Fidelity Design Optimisation of a Solenoid-Driven Linear Compressor
,”
Actuators
,
9
(
2
), p.
38
.
You do not currently have access to this content.