Abstract

In this study, responses of Lamb waves to a bias electric field in a nanoplate with the consideration of piezoelectricity, flexoelectricity, and strain gradient elasticity are investigated. First, governing equations and boundary conditions of acoustic waves propagating in bias fields are derived. Then, dispersion equations under a bias electric field are obtained and solved numerically. Numerical solutions indicate that flexoelectricity can enhance the response of Lamb waves to external bias electric fields. It is also found that the competition between flexoelectricity and strain gradient elasticity leads to a complex variation of the voltage sensitivity with respect to the wavelength and frequency of Lamb waves. Our work may provide a way of resolving the contradiction between high sensitivity and miniaturization in the conventional voltage sensors based on surface acoustic waves. The theoretical results can guide a new design of voltage sensors with high sensitivity.

References

1.
Raj
,
V. B.
,
Nimal
,
A.
,
Parmar
,
Y.
,
Sharma
,
M.
,
Sreenivas
,
K.
, and
Gupta
,
V.
,
2010
, “
Cross-Sensitivity and Selectivity Studies on Zno Surface Acoustic Wave Ammonia Sensor
,”
Sens. Actuators, B
,
147
(
2
), pp.
517
524
.
2.
Cole
,
M.
,
Spulber
,
I.
, and
Gardner
,
J. W.
,
2015
, “
Surface Acoustic Wave Electronic Tongue for Robust Analysis of Sensory Components
,”
Sens. Actuators, B
,
207
(
Part B
), pp.
1147
1153
.
3.
Li
,
Y.
,
Deng
,
C.
, and
Yang
,
M.
,
2012
, “
A Novel Surface Acoustic Wave-Impedance Humidity Sensor Based on the Composite of Polyaniline and Poly (Vinyl Alcohol) With a Capability of Detecting Low Humidity
,”
Sens. Actuators, B
,
165
(
1
), pp.
7
12
.
4.
Kawalec
,
A.
,
Jasek
,
K.
, and
Pasternak
,
M.
,
2008
, “
Measurements Results of Saw Humidity Sensor With Nafion Layer
,”
Eur. Phys. J. Spec. Top.
,
154
(
1
), pp.
123
126
.
5.
Wu
,
T.-T.
,
Chen
,
Y.-Y.
, and
Chou
,
T.-H.
,
2008
, “
A High Sensitivity Nanomaterial Based Saw Humidity Sensor
,”
J. Phys. D: Appl. Phys.
,
41
(
8
), p.
085101
.
6.
Reibel
,
J.
,
Stahl
,
U.
,
Wessa
,
T.
, and
Rapp
,
M.
,
2000
, “
Gas Analysis With Saw Sensor Systems
,”
Sens. Actuators, B
,
65
(
1–3
), pp.
173
175
.
7.
Thiele
,
J.
, and
Da Cunha
,
M. P.
,
2006
, “
High Temperature Lgs Saw Gas Sensor
,”
Sens. Actuators, B
,
113
(
2
), pp.
816
822
.
8.
Nieuwenhuizen
,
M.
, and
Nederlof
,
A.
,
1990
, “
A Saw Gas Sensor for Carbon Dioxide and Water Preliminary Experiments
,”
Sens. Actuators, B
,
2
(
2
), pp.
97
101
.
9.
Wen
,
W.
,
Shitang
,
H.
,
Shunzhou
,
L.
,
Minghua
,
L.
, and
Yong
,
P.
,
2007
, “
Enhanced Sensitivity of Saw Gas Sensor Coated Molecularly Imprinted Polymer Incorporating High Frequency Stability Oscillator
,”
Sens. Actuators, B
,
125
(
2
), pp.
422
427
.
10.
Lee
,
Y.
,
Kim
,
H.
,
Roh
,
Y.
,
Cho
,
H.
, and
Baik
,
S.
,
1998
, “
Development of a Saw Gas Sensor for Monitoring So2 Gas
,”
Sens. Actuators, A
,
64
(
2
), pp.
173
178
.
11.
Lim
,
C.
,
Wang
,
W.
,
Yang
,
S.
, and
Lee
,
K.
,
2011
, “
Development of Saw-Based Multi-Gas Sensor for Simultaneous Detection of Co2 and No2
,”
Sens. Actuators, B
,
154
(
1
), pp.
9
16
.
12.
Sadek
,
A.
,
Wlodarski
,
W.
,
Shin
,
K.
,
Kaner
,
R.
, and
Kalantar-Zadeh
,
K.
,
2008
, “
A Polyaniline/wo3 Nanofiber Composite-Based Zno/64 Yx Linbo3 Saw Hydrogen Gas Sensor
,”
Synth. Met.
,
158
(
1–2
), pp.
29
32
.
13.
Scherr
,
H.
,
Scholl
,
G.
,
Seifert
,
F.
, and
Weigel
,
R.
,
1996
, “
Quartz Pressure Sensor Based on Saw Reflective Delay Line
,”
1996 IEEE Ultrasonics Symposium. Proceedings
,
San Antonio, TX
,
Nov. 3–6
, Vol. 1, IEEE, pp.
347
350
.
14.
Moulzolf
,
S. C.
,
Behanan
,
R.
,
Lad
,
R. J.
, and
da Cunha
,
M. P.
,
2012
, “
Langasite Saw Pressure Sensor for Harsh Environments
,”
2012 IEEE International Ultrasonics Symposium
,
Dresden, Germany
,
Oct. 7–10
, IEEE, pp.
1224
1227
.
15.
Binder
,
A.
,
Bruckner
,
G.
,
Schobernig
,
N.
, and
Schmitt
,
D.
,
2013
, “
Wireless Surface Acoustic Wave Pressure and Temperature Sensor With Unique Identification Based on Linbo3
,”
IEEE Sens. J.
,
13
(
5
), pp.
1801
1805
.
16.
Talbi
,
A.
,
Sarry
,
F.
,
Elhakiki
,
M.
,
Le Brizoual
,
L.
,
Elmazria
,
O.
,
Nicolay
,
P.
, and
Alnot
,
P.
,
2006
, “
Zno/quartz Structure Potentiality for Surface Acoustic Wave Pressure Sensor
,”
Sens. Actuators, A
,
128
(
1
), pp.
78
83
.
17.
Kang
,
A.
,
Lin
,
J.
,
Ji
,
X.
,
Wang
,
W.
,
Li
,
H.
,
Zhang
,
C.
, and
Han
,
T.
,
2012
, “
A High-Sensitivity Pressure Sensor Based on Surface Transverse Wave
,”
Sens. Actuators, A
,
187
(
4
), pp.
141
146
.
18.
Murphy
,
O. H.
,
Bahmanyar
,
M. R.
,
Borghi
,
A.
,
McLeod
,
C. N.
,
Navaratnarajah
,
M.
,
Yacoub
,
M. H.
, and
Toumazou
,
C.
,
2013
, “
Continuous In Vivo Blood Pressure Measurements Using a Fully Implantable Wireless Saw Sensor
,”
Biomed. Microdevices
,
15
(
5
), pp.
737
749
.
19.
Neumeister
,
J.
,
Thum
,
R.
, and
Lüder
,
E.
,
1990
, “
A Saw Delay-line Oscillator as a High-Resolution Temperature Sensor
,”
Sens. Actuators, A
,
22
(
1–3
), pp.
670
672
.
20.
Fachberger
,
R.
, and
Erlacher
,
A.
,
2009
, “
Monitoring of the Temperature Inside a Lining of a Metallurgical Vessel Using a Saw Temperature Sensor
,”
Procedia Chem.
,
1
(
1
), pp.
1239
1242
.
21.
Binder
,
A.
, and
Fachberger
,
R.
,
2010
, “
Wireless Saw Temperature Sensor System for High-Speed High-Voltage Motors
,”
IEEE Sens. J.
,
11
(
4
), pp.
966
970
.
22.
Müller
,
A.
,
Konstantinidis
,
G.
,
Buiculescu
,
V.
,
Dinescu
,
A.
,
Stavrinidis
,
A.
,
Stefanescu
,
A.
,
Stavrinidis
,
G.
,
Giangu
,
I.
,
Cismaru
,
A.
, and
Modoveanu
,
A.
,
2014
, “
Gan/si Based Single Saw Resonator Temperature Sensor Operating in the Ghz Frequency Range
,”
Sens. Actuators, A
,
209
(
2
), pp.
115
123
.
23.
Humphries
,
J. R.
, and
Malocha
,
D. C.
,
2015
, “
Wireless Saw Strain Sensor Using Orthogonal Frequency Coding
,”
IEEE Sens. J.
,
15
(
10
), pp.
5527
5534
.
24.
Wilson
,
W. C.
,
Rogge
,
M. D.
,
Fisher
,
B. H.
,
Malocha
,
D. C.
, and
Atkinson
,
G. M.
,
2011
, “
Fastener Failure Detection Using a Surface Acoustic Wave Strain Sensor
,”
IEEE Sens. J.
,
12
(
6
), pp.
1993
2000
.
25.
Stoney
,
R.
,
Geraghty
,
D.
, and
O’Donnell
,
G. E.
,
2013
, “
Characterization of Differentially Measured Strain Using Passive Wireless Surface Acoustic Wave (Saw) Strain Sensors
,”
IEEE Sens. J.
,
14
(
3
), pp.
722
728
.
26.
Donohoe
,
B.
,
Geraghty
,
D.
, and
O’Donnell
,
G. E.
,
2010
, “
Wireless Calibration of a Surface Acoustic Wave Resonator as a Strain Sensor
,”
IEEE Sens. J.
,
11
(
4
), pp.
1026
1032
.
27.
Fransen
,
A.
,
Lubking
,
G.
, and
Vellekoop
,
M.
,
1997
, “
High-Resolution High-Voltage Sensor Based on Saw
,”
Sens. Actuators, A
,
60
(
1–3
), pp.
49
53
.
28.
Joshi
,
S.
,
1984
, “
Surface-Acoustic-Wave (saw) Voltage Sensor With Improved Sensitivity
,”
Proc. IEEE
,
72
(
10
), pp.
1418
1419
.
29.
Vellekoop
,
M.
, and
Visser
,
C.
,
1988
, “
An Integrated Saw Voltage Sensor
,”
IEEE 1988 Ultrasonics Symposium Proceedings
,
Chicago, IL
,
Oct. 2–5
, IEEE, pp.
575
578
.
30.
Medved
,
A.
,
Mishkinis
,
R.
, and
Rutkovsky
,
P.
,
1990
, “
Highly Sensitive Electrostatic Voltage Sensor on Saw Double-Waveguides
,”
Electron. Lett.
,
26
(
14
), pp.
973
975
.
31.
Vellekoop
,
M. J.
,
1998
, “
Acoustic Wave Sensors and Their Technology
,”
Ultrasonics
,
36
(
1–5
), pp.
7
14
.
32.
Gatti
,
E.
,
Palma
,
A.
, and
Verona
,
E.
,
1983
, “
A Surface Acoustic Wave Voltage Sensor
,”
Sens. Actuators
,
4
, pp.
45
54
.
33.
Joshi
,
S.
,
1982
, “
Electronically Variable Time Delay in a Linbo 3 Saw Delay Line
,”
Proc. IEEE
,
70
(
1
), pp.
95
96
.
34.
Joshi
,
S.
,
1982
, “
A Temperature Compensated High Voltage Probe Using Surface Acoustic Waves
,”
1982 Ultrasonics Symposium
,
San Diego, CA
,
Oct. 27–29
, IEEE, pp.
317
320
.
35.
Inaba
,
R.
,
Kasahara
,
Y.
, and
Wasa
,
K.
,
1982
, “
An Electrostatic Voltage Sensor Using Surface Acoustic Waves
,”
1982 Ultrasonics Symposium
,
San Diego, CA
,
Oct. 27–29
, IEEE, pp.
312
316
.
36.
Bogacki
,
F.
,
1989
, “
A Lamb Wave Electrostatic Voltage Sensor
,”
Proceedings., IEEE Ultrasonics Symposium
,,
Montreal, QC, Canada
,
Oct. 3–6
, IEEE, pp.
647
651
.
37.
Liu
,
H.
,
Wang
,
T.
,
Wang
,
Z.
, and
Kuang
,
Z.
,
2002
, “
Effect of a Biasing Electric Field on the Propagation of Antisymmetric Lamb Waves in Piezoelectric Plates
,”
Int. J. Solids Struct.
,
39
(
7
), pp.
1777
1790
.
38.
Eliseev
,
E. A.
,
Morozovska
,
A. N.
,
Glinchuk
,
M. D.
, and
Kalinin
,
S. V.
,
2017
, “
Lost Surface Waves in Nonpiezoelectric Solids
,”
Phys. Rev. B
,
96
(
4
), p.
045411
.
39.
Yang
,
W.
,
Deng
,
Q.
,
Liang
,
X.
, and
Shen
,
S.
,
2018
, “
Lamb Wave Propagation With Flexoelectricity and Strain Gradient Elasticity Considered
,”
Smart Mater. Struct.
,
27
(
8
), p.
085003
.
40.
Yang
,
W.
,
Liang
,
X.
, and
Shen
,
S.
,
2017
, “
Love Waves in Layered Flexoelectric Structures
,”
Philos. Mag.
,
97
(
33
), pp.
3186
3209
.
41.
Yang
,
W.
,
Liang
,
X.
,
Deng
,
Q.
, and
Shen
,
S.
,
2020
, “
Rayleigh Wave Propagation in a Homogeneous Centrosymmetric Flexoelectric Half-Space
,”
Ultrasonics
,
103
, p.
106105
.
42.
Liu
,
H.
,
Kuang
,
Z.
, and
Cai
,
Z.
,
2003
, “
Propagation of Bleustein–Gulyaev Waves in a Prestressed Layered Piezoelectric Structure
,”
Ultrasonics
,
41
(
5
), pp.
397
405
.
43.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2017
, “A Continuum Theory of Flexoelectricity,”
Flexoelectricity in Solids: From Theory to Applications
,
A.K.
Tagantsev
, and
P.V.
Yudin
, eds.,
World Scientific
,
Singapore
, pp.
111
167
.
44.
Yang
,
J.
, and
Hu
,
Y.
,
2004
, “
Mechanics of Electroelastic Bodies Under Biasing Fields
,”
ASME Appl. Mech. Rev.
,
57
(
3
), pp.
173
189
.
45.
Wang
,
Z.
, and
Shang
,
F.
,
1997
, “
Cylindrical Buckling of Piezoelectric Laminated Plates
,”
Acta Mech. Solida Sin.
,
18
(
2
), pp.
101
108
.
46.
Shang
,
F.
,
Wang
,
Z.
, and
Li
,
Z.
,
1997
, “
An Exact Analysis of Thermal Buckling of Piezoelectric Laminated Plates
,”
Acta Mech. Solida Sin.
,
10
(
2
), pp.
95
107
.
47.
Hu
,
S.
, and
Shen
,
S.
,
2009
, “
Electric Field Gradient Theory With Surface Effect for Nano-Dielectrics
,”
Comput. Mater. Continua (CMC)
,
13
(
1
), p.
63
.
48.
Lazar
,
M.
,
Maugin
,
G. A.
, and
Aifantis
,
E. C.
,
2006
, “
Dislocations in Second Strain Gradient Elasticity
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1787
1817
.
49.
Xu
,
T.
,
Shen
,
J.
,
Bo
,
Z.
,
Fangand
,
C.
, and
Qu
,
Y.
,
1993
,
Electron Ceramic Materials
,
Tianjin University Press
,
Tianjin, China
, p.
13
.
50.
Pan
,
E.
,
2001
, “
Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
608
618
.
51.
Fu
,
Y. Q.
,
Luo
,
J.
,
Nguyen
,
N. T.
,
Walton
,
A.
,
Flewitt
,
A. J.
,
Zu
,
X. T.
,
Li
,
Y.
,
McHale
,
G.
,
Matthews
,
A.
,
Iborra
,
E.
,
Du
,
H.
, and
Milne
,
W.I.
,
2017
, “
Advances in Piezoelectric Thin Films for Acoustic Biosensors, Acoustofluidics and Lab-on-Chip Applications
,”
Prog. Mater. Sci.
,
89
(
52
), pp.
31
91
.
52.
Go
,
D. B.
,
Atashbar
,
M. Z.
,
Ramshani
,
Z.
, and
Chang
,
H.-C.
,
2017
, “
Surface Acoustic Wave Devices for Chemical Sensing and Microfluidics: A Review and Perspective
,”
Anal. Methods
,
9
(
28
), pp.
4112
4134
.
53.
Deng
,
Q.
,
2017
, “
Size-dependent Flexoelectric Response of a Truncated Cone and the Consequent Ramifications for the Experimental Measurement of Flexoelectric Properties
,”
ASME J. Appl. Mech.
,
84
(
10
), p.
101007
.
54.
Abdollahi
,
A.
,
Vásquez-Sancho
,
F.
, and
Catalan
,
G.
,
2018
, “
Piezoelectric Mimicry of Flexoelectricity
,”
Phys. Rev. Lett.
,
121
(
20
), p.
205502
.
55.
Büyükköse
,
S.
,
Vratzov
,
B.
,
Ataç
,
D.
,
van der Veen
,
J.
,
Santos
,
P.
, and
van der Wiel
,
W. G.
,
2012
, “
Ultrahigh-Frequency Surface Acoustic Wave Transducers on Zno/sio2/si Using Nanoimprint Lithography
,”
Nanotechnology
,
23
(
31
), p.
315303
.
56.
Wang
,
L.
,
Chen
,
S.
,
Zhang
,
J.
,
Xiao
,
D.
,
Han
,
K.
,
Ning
,
X.
,
Liu
,
J.
,
Chen
,
Z.
, and
Zhou
,
J.
,
2017
, “
Enhanced Performance of 17.7 Ghz Saw Devices Based on Aln/diamond/si Layered Structure With Embedded Nanotransducer
,”
Appl. Phys. Lett.
,
111
(
25
), p.
253502
.
57.
Wang
,
L.
,
Chen
,
S.
,
Zhang
,
J.
,
Zhou
,
J.
,
Yang
,
C.
,
Chen
,
Y.
, and
Duan
,
H.
,
2018
, “
High Performance 33.7 Ghz Surface Acoustic Wave Nanotransducers Based on Alscn/Diamond/si Layered Structures
,”
Appl. Phys. Lett.
,
113
(
9
), p.
093503
.
58.
Zheng
,
J.
,
Zhou
,
J.
,
Zeng
,
P.
,
Liu
,
Y.
,
Shen
,
Y.
,
Yao
,
W.
, and
Chen
,
Z.
, et al
,
2020
, “
30 Ghz Surface Acoustic Wave Transducers With Extremely High Mass Sensitivity
,”
Appl. Phys. Lett.
,
116
(
12
), p.
123502
.
You do not currently have access to this content.