Abstract

This paper has revisited the roof deformation and collapse of stamps with isolated grooves based on a contact mechanics approach, with emphasis on establishing the nonadhesive and adhesive contact solutions for surfaces containing a shallow rectangular groove with the effects of applied load and interfacial adhesion taken into account. By solving singular integral equations and using the energy release rate approach, closed-form solutions are derived analytically for the deformed groove shapes, interfacial stress distributions, and equilibrium relations between load and contact size, which reduce to the previously proposed solutions without adhesion or without applied load. Finite element (FE) analysis is performed to validate the nonadhesion solutions, while experiment results of stamp collapse reported in the literature are adopted to examine the adhesion solutions. By introducing the Johnson parameter α to represent a competition between surface energy and elastic strain energy of the groove, four kinds of contact behaviors of the groove roof can be characterized appropriately: nonadhesion, weak adhesion, intermediate adhesion, and strong adhesion. Hysteresis loop and energy loss due to distinct load/unloading paths are revealed in the cases of intermediate and strong adhesion. We have also provided the critical applied pressure to achieve roof collapse and the corresponding equilibrium contact size for full range of α.

References

1.
Whitesides
,
G. M.
,
Ostuni
,
E.
,
Takayama
,
S.
,
Jiang
,
X.
, and
Ingber
,
D. E.
,
2001
, “
Soft Lithography in Biology and Biochemistry
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
335
373
.
2.
Quist
,
A. P.
,
Pavlovic
,
E.
, and
Oscarsson
,
S.
,
2005
, “
Recent Advances in Microcontact Printing
,”
Anal. Bioanal. Chem.
,
381
(
3
), pp.
591
600
.
3.
Odom
,
T. W.
,
Love
,
J. C.
,
Wolfe
,
D. B.
,
Paul
,
K. E.
, and
Whitesides
,
G. M.
,
2002
, “
Improved Pattern Transfer in Soft Lithography Using Composite Stamps
,”
Langmuir
,
18
(
13
), pp.
5314
5320
.
4.
Hui
,
C. Y.
,
Jagota
,
A.
,
Lin
,
Y. Y.
, and
Kramer
,
E. J.
,
2002
, “
Constraints on Microcontact Printing Imposed by Stamp Deformation
,”
Langmuir
,
18
(
4
), pp.
1394
1407
.
5.
Sharp
,
K. G.
,
Blackman
,
G. S.
,
Glassmaker
,
N. J.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2004
, “
Effect of Stamp Deformation on the Quality of Microcontact Printing: Theory and Experiment
,”
Langmuir
,
20
(
15
), pp.
6430
6438
.
6.
Hsia
,
K. J.
,
Huang
,
Y.
,
Menard
,
E.
,
Park
,
J. U.
,
Zhou
,
W.
,
Rogers
,
J. A.
, and
Fulton
,
J. M.
,
2005
, “
Collapse of Stamps for Soft Lithography Due to Interfacial Adhesion
,”
Appl. Phys. Lett.
,
86
(
15
), p.
154106
.
7.
Zhou
,
W.
,
Huang
,
Y.
,
Menard
,
E.
,
Aluru
,
N. R.
,
Rogers
,
J. A.
, and
Alleyne
,
A. G.
,
2005
, “
Mechanism for Stamp Collapse in Soft Lithography
,”
Appl. Phys. Lett.
,
87
(
25
), p.
251925
.
8.
Huang
,
Y.
,
Zhou
,
W.
,
Hsia
,
K. J.
,
Menard
,
E.
,
Park
,
J. U.
,
Rogers
,
J. A.
, and
Alleyne
,
A. G.
,
2005
, “
Stamp Collapse in Soft Lithography
,”
Langmuir
,
21
(
17
), pp.
8058
8068
.
9.
Xue
,
Y.
,
Kang
,
D.
,
Ma
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2017
, “
Collapse of Microfluidic Channels/Reservoirs in Thin, Soft Epidermal Devices
,”
Extreme Mech. Lett.
,
11
, pp.
18
23
.
10.
Wu
,
J.
,
Kim
,
S.
,
Chen
,
W.
,
Carlson
,
A.
,
Hwang
,
K.-C.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2011
, “
Mechanics of Reversible Adhesion
,”
Soft Matter
,
7
(
18
), pp.
8657
8662
.
11.
Jin
,
F.
,
Guo
,
X.
, and
Wan
,
Q.
,
2016
, “
Revisiting the Maugis-Dugdale Adhesion Model of Elastic Periodic Wavy Surfaces
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101007
.
12.
Jin
,
F.
,
Wan
,
Q.
, and
Guo
,
X.
,
2016
, “
A Double-Westergaard Model for Adhesive Contact of a Wavy Surface
,”
Int. J. Solids Struct.
,
102–103
(
1
), pp.
66
76
.
13.
Chumak
,
K.
,
2016
, “
Adhesive Contact Between Solids With Periodically Grooved Surfaces
,”
Int. J. Solids Struct.
,
78–79
(
1
), pp.
70
76
.
14.
Jin
,
F.
,
Guo
,
X.
, and
Wan
,
Q.
,
2018
, “
Plane Contact and Adhesion of Two Elastic Solids With an Interfacial Groove
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
041002
.
15.
McMeeking
,
R. M.
,
Ma
,
L.
, and
Arzt
,
E.
,
2010
, “
Bi-Stable Adhesion of a Surface With a Dimple
,”
Adv. Eng. Mater.
,
12
(
5
), pp.
389
397
.
16.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2017
, “
A Maugis-Dugdale Cohesive Solution for Adhesion of a Surface With a Dimple
,”
J. R. Soc. Interface
,
14
(
127
), p.
20160996
.
17.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
(
1558
), pp.
301
313
.
18.
Johnson
,
K. L.
,
1995
, “
The Adhesion of Two Elastic Bodies With Slightly Wavy Surfaces
,”
Int. J. Solids Struct.
,
32
(
3–4
), pp.
423
430
.
19.
Martynyak
,
R.
,
2001
, “
The Contact of a Half-Space and an Uneven Base in the Presence of an Intercontact Gap Filled by an Ideal Gas
,”
J. Math. Sci.
,
107
(
1
), pp.
3680
3685
.
20.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
21.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1970
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
22.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
.
23.
Hills
,
D. A.
,
Nowell
,
D.
, and
Sackfield
,
A.
,
1993
,
Mechanics of Elastic Contacts
,
Butterworth–Heinemann
,
Oxford, UK
.
You do not currently have access to this content.