Abstract

Origami structures, which were inspired by traditional paper folding arts, have been applied for engineering problems for the last two decades. Origami-based thin-wall tubes have been extensively investigated under axial loadings. However, less has been done with radial stiffness as one of the critical mechanical properties of a tubular structure working under lateral loadings. In this study, the radial stiffness of novel thin-wall tubular structures based on origami patterns have been studied with compression tests and finite element analysis (FEA) simulations. The results show that the radial stiffness of an origami-inspired tube can achieve about 27.1 times that of a circular tube with the same circumcircle diameter (100 mm), height (60 mm), and wall thickness (2 mm). Yoshimura, Kresling, and modified Yoshimura patterns are selected as the basic frames, upon which the influences of different design parameters are tested and discussed. Given that the weight can vary due to different designs, the stiffness-to-weight ratio is also calculated. The origami-inspired tubular structures with superior stiffness performances are obtained and can be extended to crashworthy structures, functional structures, and stiffness enhancement with low structural weight.

References

1.
Borghi
,
A.
,
Murphy
,
O.
,
Bahmanyar
,
R.
, and
McLeod
,
C.
,
2014
, “
Effect of Stent Radial Force on Stress Pattern After Deployment: A Finite Element Study
,”
J. Mater. Eng. Perform.
,
23
(
7
), pp.
2599
2605
.
2.
Guha
,
I.
,
Randolph
,
M. F.
, and
White
,
D. J.
,
2016
, “
Evaluation of Elastic Stiffness Parameters for Pipeline–Soil Interaction
,”
J. Geotech. Geoenviron. Eng.
,
142
(
6
), p.
04016009
.
3.
Baleh
,
R.
, and
Abdul-Latif
,
A.
,
2007
, “
Quasi-Static Biaxial Plastic Buckling of Tubular Structures Used as an Energy Absorber
,”
ASME J. Appl. Mech. Trans.
,
74
(
4
), pp.
628
635
.
4.
Liu
,
Z.
,
Huang
,
Z.
, and
Qin
,
Q.
,
2017
, “
Experimental and Theoretical Investigations on Lateral Crushing of Aluminum Foam-Filled Circular Tubes
,”
Compos. Struct.
,
175
, pp.
19
27
.
5.
Kim
,
J.
, and
Jung
,
M. K.
,
2013
, “
Progressive Collapse Resisting Capacity of Tilted Building Structures
,”
Struct. Des. Tall Spec. Build.
,
22
(
18
), pp.
1359
1375
.
6.
Yasuda
,
H.
,
Gopalarethinam
,
B.
,
Kunimine
,
T.
,
Tachi
,
T.
, and
Yang
,
J.
,
2019
, “
Origami-Based Cellular Structures With In Situ Transition Between Collapsible and Load-Bearing Configurations
,”
Adv. Eng. Mater.
,
21
(
12
), pp.
1
8
.
7.
U.S. Department of Transportation
,
2021
, “
Pipeline Incident 20 Year Trends
”, https://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends, Accessed February 4, 2021.
8.
Czechowski
,
L.
,
Bieńkowska
,
M.
, and
Szewczyk
,
W.
,
2018
, “
Paperboard Tubes Failure Due to Lateral Compression-Experimental and Numerical Study
,”
Compos. Struct.
,
203
, pp.
132
141
.
9.
Baroutaji
,
A.
,
Gilchrist
,
M. D.
,
Smyth
,
D.
, and
Olabi
,
A. G.
,
2015
, “
Analysis and Optimization of Sandwich Tubes Energy Absorbers Under Lateral Loading
,”
Int. J. Impact Eng.
,
82
, pp.
74
88
.
10.
Li
,
S.
,
Guo
,
X.
,
Li
,
Q.
, and
Sun
,
G.
,
2020
, “
On Lateral Crashworthiness of Aluminum/Composite Hybrid Structures
,”
Compos. Struct.
,
245
, p.
112334
.
11.
Firouzsalari
,
E.
,
Dizhur
,
S.
,
Jayaraman
,
D.
,
Chouw
,
K.
,
and Ingham
,
N.
, and
M
,
J.
,
2020
, “
Flax Fabric-Reinforced Epoxy Pipes Subjected to Lateral Compression
,”
Compos. Struct.
,
244
, p.
112307
.
12.
Shang
,
Z.
,
Ma
,
J.
,
You
,
Z.
, and
Wang
,
S.
,
2020
, “
Lateral Indentation of a Reinforced Braided Tube With Tunable Stiffness
,”
Thin-Walled Struct.
,
149
, p.
106608
.
13.
Eyvazian
,
A.
,
Akbarzadeh
,
I.
, and
Shakeri
,
M.
,
2012
, “
Experimental Study of Corrugated Tubes Under Lateral Loading
,”
Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
,
Istanbul, Turkey
,
July 12–14, 2010
.
14.
Mozafari
,
H.
,
Eyvazian
,
A.
, and
Hamouda
,
A. M.
,
2017
, “
The Effect of Number of Corrugation on Crashworthiness of Aluminum Corrugated Tube Under Lateral Loading
,”
Procedia Eng.
,
173
, pp.
1275
1282
.
15.
Eyvazian
,
A.
,
Mozafari
,
H.
,
Tarlochan
,
F.
, and
Hamouda
,
A. M. S.
,
2018
, “
Numerical and Experimental Investigation on Corrugation Geometry for Metallic Tubes Under Lateral Loading
,”
Mater. Sci. Forum
,
916
, pp.
226
231
.
16.
Eyvazian
,
A.
,
Najafian
,
S.
,
Mozafari
,
H.
, and
Kumar
,
A. P.
,
2019
,
Advances in Manufacturing Processes
,
Springer
,
Singapore
, pp.
599
607
.
17.
Baroutaji
,
A.
,
Arjunan
,
A.
,
Stanford
,
M.
,
Robinson
,
J.
, and
Olabi
,
A. G.
,
2021
, “
Deformation and Energy Absorption of Additively Manufactured Functionally Graded Thickness Thin-Walled Circular Tubes Under Lateral Crushing
,”
Eng. Struct.
,
226
, p.
111324
.
18.
Tang
,
R.
,
Huang
,
H.
,
Tu
,
H.
,
Liang
,
H.
,
Liang
,
M.
,
Song
,
Z.
,
Xu
,
Y.
,
Jiang
,
H.
, and
Yu
,
H.
,
2014
, “
Origami-Enabled Deformable Silicon Solar Cells
,”
Appl. Phys. Lett.
,
104
(
8
), p.
083501
.
19.
Shigemune
,
H.
,
Maeda
,
S.
,
Hara
,
Y.
,
Hosoya
,
N.
, and
Hashimoto
,
S.
,
2016
, “
Origami Robot: A Self-Folding Paper Robot With an Electrothermal Actuator Created by Printing
,”
IEEE/ASME Trans. Mechatron.
,
21
(
6
), pp.
2746
2754
.
20.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.
21.
Reis
,
P. M.
,
López Jiménez
,
F.
, and
Marthelot
,
J.
,
2015
, “
Transforming Architectures Inspired by Origami
,”
Proc. Natl. Acad. Sci. USA
,
112
(
40
), pp.
12234
12235
.
22.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2021
, “
Bio-Inspired Origami Metamaterials With Metastable Phases Through Mechanical Phase Transitions
,”
ASME J. Appl. Mech.
,
88
(
9
), p.
091002
.
23.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.
24.
Christy Albert
,
P.
,
Radzi Ab Ghani
,
A.
,
Zaid Othman
,
M.
, and
Ahmad Zaidi
,
A. M.
,
2016
, “
Axial Crushing Behavior of Aluminum Square Tube With Origami Pattern
,”
Mod. Appl. Sci.
,
10
(
2
), p.
90
.
25.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin-Walled Struct.
,
54
, pp.
65
71
.
26.
Lee
,
T. U.
,
Yang
,
X.
,
Ma
,
J.
,
Chen
,
Y.
, and
Gattas
,
J. M.
,
2019
, “
Elastic Buckling Shape Control of Thin-Walled Cylinder Using Pre-Embedded Curved-Crease Origami Patterns
,”
Int. J. Mech. Sci.
,
151
, pp.
322
330
.
27.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2019
, “
Equilibria and Bifurcations of a Foldable Paper-Based Spring Inspired by Kresling-Pattern Origami
,”
Phys. Rev. E
,
100
(
6
), p.
63001
.
28.
Chen
,
Z.
,
Wu
,
T.
,
Nian
,
G.
,
Shan
,
Y.
,
Liang
,
X.
,
Jiang
,
H.
, and
Qu
,
S.
,
2019
, “
Ron Resch Origami Pattern Inspired Energy Absorption Structures
,”
ASME J. Appl. Mech.
,
86
(
1
), p. 011005.
29.
Zhang
,
M.
,
Yang
,
J.
, and
Zhu
,
R.
,
2021
, “
Origami-Based Bistable Metastructures for Low-Frequency Vibration Control
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051009
.
30.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. A
,
472
(
2185
), p.
20150607
.
31.
Ma
,
J.
, and
You
,
Z.
,
2013
, “
Energy Absorption of Thin-Walled Beams With a Pre-Folded Origami Pattern
,”
Thin-Walled Struct.
,
73
, pp.
198
206
.
32.
Doroftei
,
I. A.
,
Bujoreanu
,
C.
, and
Doroftei
,
I.
,
2018
, “
An Overview on the Applications of Mechanisms in Architecture. Part II: Foldable Plate Structures
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
444
(
5
), p.
052019
.
33.
Kresling
,
B.
,
2012
, “
Origami-Structures in Nature: Lessons in Designing ‘Smart’ Materials
,”
MRS Online Proceedings Library
,
1420
, pp.
42
54
.
34.
Abdewi
,
E. F.
,
Sulaiman
,
S.
,
Hamouda
,
A. M. S.
, and
Mahdi
,
E.
,
2008
, “
Quasi-Static Axial and Lateral Crushing of Radial Corrugated Composite Tubes
,”
Thin-Walled Struct.
,
46
(
3
), pp.
320
332
.
35.
De Giglio
,
E.
,
Bonifacio
,
M. A.
,
Ferreira
,
A. M.
,
Cometa
,
S.
,
Ti
,
Z. Y.
,
Stanzione
,
A.
,
Dalgarno
,
K.
, and
Gentile
,
P.
,
2018
, “
Multi-Compartment Scaffold Fabricated via 3D-Printing as In Vitro Co-Culture Osteogenic Model
,”
Sci. Rep.
,
8
(
1
), pp.
1
13
.
36.
Ramakrishna
,
S.
, and
Hamada
,
H.
,
1998
, “
Energy Absorption Characteristics of Crash Worthy Structural Composite Materials
,”
Key Eng. Mater.
,
141–143
, pp.
585
620
.
37.
Pradier
,
C.
,
Cavoret
,
J.
,
Dureisseix
,
D.
,
Jean-Mistral
,
C.
, and
Ville
,
F.
,
2016
, “
An Experimental Study and Model Determination of the Mechanical Stiffness of Paper Folds
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041401
.
38.
Wang
,
W.
, and
Qiu
,
X.
,
2018
, “
Coupling of Creases and Shells
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011009
.
39.
Simitses
,
G. J.
,
1986
, “
Buckling and Postbuckling of Imperfect Cylindrical Shells: A Review
,”
ASME Appl. Mech. Rev.
,
39
(
10
), pp.
1517
1524
.
40.
Castro
,
S. G. P.
,
Mittelstedt
,
C.
,
Monteiro
,
F. A. C.
,
Arbelo
,
M. A.
,
Ziegmann
,
G.
, and
Degenhardt
,
R.
,
2014
, “
Linear Buckling Predictions of Unstiffened Laminated Composite Cylinders and Cones Under Various Loading and Boundary Conditions Using Semi-Analytical Models
,”
Compos. Struct.
,
118
(
1
), pp.
303
315
.
41.
Calladine
,
C. R.
,
1995
, “
Understanding Imperfection-Sensitivity in the Buckling of Thin-Walled Shells
,”
Thin-Walled Struct.
,
23
(
1–4
), pp.
215
235
.
42.
Cox
,
B. S.
,
Groh
,
R. M. J.
, and
Pirrera
,
A.
,
2019
, “
Nudging Axially Compressed Cylindrical Panels Toward Imperfection Insensitivity
,”
ASME J. Appl. Mech.
,
86
(
7
), p.
071010
.
43.
Wang
,
B.
,
Zhu
,
S.
,
Hao
,
P.
,
Bi
,
X.
,
Du
,
K.
,
Chen
,
B.
,
Ma
,
X.
, and
Chao
,
Y. J.
,
2018
, “
Buckling of Quasi-Perfect Cylindrical Shell Under Axial Compression: A Combined Experimental and Numerical Investigation
,”
Int. J. Solids Struct.
,
130–131
, pp.
232
247
.
44.
Ma
,
J.
,
Song
,
J.
, and
Chen
,
Y.
,
2018
, “
An Origami-Inspired Structure With Graded Stiffness
,”
Int. J. Mech. Sci.
,
136
, pp.
134
142
.
45.
Cheng
,
Y.
,
Qin
,
H.
,
Acevedo
,
N. C.
,
Jiang
,
X.
, and
Shi
,
X.
,
2020
, “
3D Printing of Extended-Release Tablets of Theophylline Using Hydroxypropyl Methylcellulose (HPMC) Hydrogels
,”
Int. J. Pharm.
,
591
, p.
119983
.
You do not currently have access to this content.