Abstract

The postbuckling behavior of an elastic fiber subjected to lateral constraints is of practical importance in a wide range of medical and engineering applications. The vast majority of existing studies have adopted the assumption that the lateral constrains are fixed in space and rigid. This assumption is often far from the reality of the physical complexity of the abovementioned systems. In this paper, we study analytically, numerically, and experimentally the behavior of an elastic fiber that is subjected to compressive force and constrained by a flexible tube. The latter marks a point of departure from available research. Our experiments provide quantitative information related to the overall behavior of the system, like force-shortening relation and deflection of the flexible tube. That information is complemented by finite-element simulations that enable in-depth analysis of the deformation of the fiber as well as contact characteristics between the fiber and the inner wall of the flexible tube. Finally, a simple mathematical model, aimed at providing analytical insights, is presented. Overall, the theoretical, numerical, and experimental results are in very good agreement. They highlight the fact that the behavior of a compressed fiber that is constrained by a deformable tube significantly deviates from that of a fiber constrained inside a rigid cylinder. Moreover, it is shown that the overall behavior as well as the evolution of contact between the fiber and the cylinder heavily depends on the ratio between the stiffness of the fiber and the lateral stiffness of the tube.

References

1.
Lubinski
,
A.
,
1950
, “
A Study of the Buckling of Rotary Drilling Strings
,”
Drilling and Production Practice
,
New York
.
2.
Lubinski
,
A.
, and
Blenkarn
,
K. A.
,
1957
, “
Buckling of Tubing in Pumping Wells, Its Effects and Means for Controlling It
,”
AIME J. Pet. Trans.
,
210
, pp.
73
88
.
3.
Seldenrath
,
T.
,
1958
, “
Note on Buckling of Tubing in Pumping Wells
,”
AIME J. Pet. Trans.
,
213
, pp.
369
399
.
4.
Liu
,
J.-P.
,
Zhong
,
X.-Y.
,
Cheng
,
Z.-B.
,
Feng
,
X.-Q.
, and
Ren
,
G.-X.
,
2018
, “
Post-Buckling Analysis of a Rod Confined in a Cylindrical Tube
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071001
.
5.
Mitchell
,
R. F.
,
1982
, “
Buckling Behavior of Well Tubing: the Packer Effect
,”
Soc. Pet. Eng. J.
,
22
(
05
), pp.
616
624
.
6.
Schneider
,
P. A.
,
2003
,
Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery
,
Marcel Dekker Inc.
,
New York
, 215082306.
7.
López-Mínguez
,
J. R.
,
Davila
,
E.
,
Doblado
,
M.
,
Merchan
,
A.
, and
Gonzalez
,
R.
,
2004
, “
Rupture and Intracoronary Entrapment of an Angioplasty Guidewire With the X-Sizer Thromboatherectomy Catheter During Rescue Angioplasty
,”
Rev. Esp. Cardiol.
,
57
(
2
), pp.
180
183
.
8.
Ito
,
S.
,
Yoshida
,
T.
, and
Suda
,
H.
,
2013
, “
A Case of Fractured Guide Wire Perforating the Coronary Artery and Ascending Aorta During Percutaneous Coronary Intervention
,”
J. Cardiol. Cases
,
7
(
5
), pp.
137
141
.
9.
Katopodes
,
F. V.
,
Barber
,
J. R.
, and
Shan
,
Y.
,
2001
, “
Torsional Deformation of an Endoscope Probe
,”
Proc. R. Soc. A
,
457
, pp.
2491
2506
.
10.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2011
, “
Stiffness Control of Surgical Continuum Manipulators
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
334
345
.
11.
Liu
,
C.-W.
, and
Chen
,
J.-S.
,
2013
, “
Effect of Coulomb Friction on the Deformation of an Elastica Constrained in a Straight Channel With Clearance
,”
Eur. J. Mech. A. Solids
,
39
, pp.
50
59
.
12.
Lubinski
,
A.
,
Althouse
,
W. S.
, and
Logan
,
J. L.
,
1962
, “
Helical Buckling of Tubing Sealed in Packers
,”
J. Pet. Technol.
,
14
(
6
), pp.
655
670
.
13.
Fang
,
J.
,
Li
,
S.-Y.
, and
Chen
,
J.-S.
,
2013
, “
On a Compressed Spatial Elastica Constrained Inside a Tube
,”
Acta Mech.
,
224
(
11
), pp.
2635
2647
.
14.
Liakou
,
A.
,
2018
, “
Constrained Buckling of Spatial Elastica Application of Optimal Control Method
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081005
.
15.
Xiao
,
J.
,
Chen
,
Y.
,
Lu
,
X.
,
Xu
,
B.
,
Chen
,
X.
, and
Xu
,
J.
,
2018
, “
Three Dimensional Buckling Beam Under Cylindrical Constraint
,”
Int. J. Mech. Sci.
,
150
, pp.
348
355
.
16.
Paslay
,
P. R.
, and
Bogy
,
D. B.
,
1964
, “
The Stability of a Circular Rod Laterally Constrained to Be in Contact With an Inclined Circular Cylinder
,”
ASME J. Appl. Mech.
,
31
(
4
), pp.
605
610
.
17.
Cheatham
,
J. B.
, and
John
,
B.
,
1984
, “
Helical Postbuckling Configuration of a Weightless Column Under the Action of an Axial Load
,”
Soc. Pet. Eng. J.
,
24
(
04
), pp.
467
472
.
18.
Dawson
,
R.
,
1984
, “
Drillpipe Buckling in Inclined Holes
,”
J. Pet. Technol.
,
36
(
10
), pp.
1734
1738
.
19.
Tan
,
X. C.
, and
Forsman
,
B.
,
1995
, “
Buckling of Slender String in Cylindrical Tube Under Axial Load: Experiments and Theoretical Analysis
,”
Exp. Mech.
,
35
(
1
), pp.
55
60
.
20.
Kuru
,
E.
,
Martinez
,
A.
,
Miska
,
S.
, and
Qiu
,
W.
,
2000
, “
The Buckling Behavior of Pipes and Its Influence on the Axial Force Transfer in Directional Wells
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
129
135
.
21.
Martinez
,
A.
,
Miska
,
S.
,
Kuru
,
E.
, and
Sorem
,
J.
,
2000
, “
Experimental Evaluation of the Lateral Contact Force in Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
123
128
.
22.
Tan
,
X. C.
, and
Digby
,
P. J.
,
1993
, “
Buckling of Drill String Under the Action of Gravity and Axial Thrust
,”
Int. J. Solids Struct.
,
30
(
19
), pp.
2675
2691
.
23.
Miska
,
S.
, and
Cunha
,
J. C.
,
1995
, “
An Analysis of Helical Buckling of Tubulars Subjected to Axial and Torsional Loading in Inclined Wellbore
,”
Proceedings of SPE Production and Operations Symposium, SPE 29460
,
Oklahoma City, OK
,
Apr. 2–4
.
24.
Huang
,
N. C.
, and
Pattillo
,
P. D.
,
2000
, “
Helical Buckling of a Tube in an Inclined Wellbore
,”
Int. J. Non Linear Mech.
,
35
(
5
), pp.
911
923
.
25.
Wu
,
J.
, and
Juvkam-Wold
,
H. C.
,
1993
, “
Helical Buckling of Pipes in Extended Reach and Horizontal Wells. Part 2. Frictional Drag Analysis
,”
ASME J. Energy Resour. Technol.
,
115
(
3
), pp.
196
201
.
26.
McCourt
,
I.
,
Truslove
,
T.
, and
Kubie
,
J.
,
2002
, “
Penetration of Tubulars Drill Pipes in Horizontal Oil Wells
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
216
(
12
), pp.
1237
1245
.
27.
Miller
,
J. T.
,
Su
,
T. V. E. B. D.
,
Pabon
,
J.
,
Wicks
,
N.
,
Bertoldi
,
K.
and
Reis
,
P. M.
,
2015
, “
Buckling-Induced Lock-Up of a Slender Rod Injected Into a Horizontal Cylinder
,”
Int. J. Solids Struct.
,
72
, pp.
153
164
.
28.
Miller
,
J. T.
,
Su
,
T.
,
Pabon
,
J.
,
Wicks
,
N.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2015
, “
Buckling of a Thin Elastic Rod Inside a Horizontal Cylindrical Constraint
,”
Extreme Mech. Lett.
,
3
, pp.
36
44
.
29.
Liu
,
J. P.
,
Zhong
,
X.-Y.
,
Cheng
,
Z.-B.
,
Feng
,
X.-Q.
, and
Ren
,
G.-X.
,
2018
, “
Buckling of a Slender Rod Confined in a Circular Tube: Theory, Simulation, and Experiment
,”
Int. J. Mech. Sci.
,
140
, pp.
288
305
.
30.
Wu
,
J.
, and
Juvkam-Wold
,
H. C.
,
1995
, “
The Effect of Wellbore Curvature on Tubular Buckling and Lockup
,”
ASME J. Energy Resour. Technol.
,
117
(
3
), pp.
214
218
.
31.
Chen
,
J.-S.
, and
Li
,
C.-W.
,
2007
, “
Planar Elastica Inside a Curved Tube With Clearance
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
6173
6186
.
32.
Mogilner
,
A.
, and
Rubinstein
,
B.
,
2005
, “
The Physics of Filopodial Protrusion
,”
Biophys. J.
,
89
(
2
), pp.
782
795
.
33.
Mattila
,
P. K.
, and
Lappalainen
,
P.
,
2008
, “
Filopodia: Molecular Architecture and Cellular Functions
,”
Nat. Rev. Mol. Cell Biol.
,
9
(
6
), pp.
446
454
.
34.
Pronk
,
S.
,
Geissler
,
P. L.
, and
Fletcher
,
D. A.
,
2008
, “
The Limits of Filopodium Stability
,”
Phys. Rev. Lett.
,
100
(
25
), p.
258102
.
35.
Vetter
,
R.
,
Wittel
,
F. K.
, and
Herrmann
,
H. J.
,
2014
, “
Morphogenesis of Filaments Growing in Flexible Confinements
,”
Comput. Phys. Eng. Mater.
,
5
, pp.
1
7
.
Article number:4437
.
36.
Leijnse
,
N.
,
Oddershede
,
L. B.
, and
Bendix
,
P. M.
,
2015
, “
Helical Buckling of Actin Inside Filopodia Generates Traction
,”
Proc. Natl. Acad. Sci.
,
112
(
1
), pp.
136
141
.
37.
Kats
,
S.
, and
Givli
,
S.
,
2015
, “
The Post-buckling Behavior of a Beam Constrained by Springy Walls
,”
J. Mech. Phys. Solids
,
78
, pp.
443
466
.
38.
Kats
,
S.
, and
Givli
,
S.
,
2017
, “
The Post-buckling Behavior of Planar Elastica Constrained by a Deformable Wall
,”
ASME J. Appl. Mech.
,
84
(
5
), p.
051001
.
39.
Van der Heijden
,
G. H. M.
, and
Wang
,
Z.
,
2021
, “
Buckling Between Soft Walls: Sequential Stabilization Through Contact
,”
Proc. R. Soc. A
,
477
(
2250
), pp.
1
23
.
40.
Manning
,
R. S.
, and
Bulman
,
G. B.
,
2005
, “
Stability of an Elastic Rod Buckling Into a Soft Wall
,”
Proc. R. Soc. A
,
461
(
2060
), pp.
2423
2450
.
41.
Chen
,
J.-S.
, and
Chen
,
D.-W.
,
2019
, “
Deformation of a Spatial Elastica Constrained Inside a Springy Tube
,”
Acta Mech.
,
230
(
12
), pp.
4303
4310
.
42.
Chemny
,
S.
, and
Givli
,
S.
,
2021
, “
The Mechanical Behavior of Fixed-Angle Bows
,”
Acta Mech.
,
232
, pp.
3215
3232
.
43.
Bigoni
,
D.
,
Bosi
,
F.
,
Dal Corso
,
F.
, and
Misseroni
,
D.
,
2014
, “
Instability of a Penetrating Blade
,”
J. Mech. Phys. Solids
,
64
, pp.
411
425
.
44.
Bigoni
,
D.
,
Dal Corso
,
F.
,
Bosi
,
F.
, and
Misseroni
,
D.
,
2015
, “
Eshelby-Like Forces Acting on Elastic Structures: Theoretical and Experimental Proof
,”
Mech. Mater.
,
80
(
Part B
), pp.
368
374
.
45.
Dayan
,
Y.
,
Durban
,
D.
, and
Givli
,
S.
,
2021
, “
Initial Post-contact Behavior of an Axially Compressed Fiber Constrained Inside a Rigid Cylinder—Experimental, Analytical, and Numerical Investigations
,”
Under Review.
46.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
,
McGraw-Hill Book
,
New York
.
47.
Chai
,
H.
,
1998
, “
The Post-buckling Response of a Bi-laterally Constrained Column
,”
J. Mech. Phys. Solids
,
46
(
7
), pp.
1155
1181
.
You do not currently have access to this content.