Abstract

We present a constitutive model for particle-binder composites that accounts for finite-deformation kinematics, nonlinear elastoplasticity without apparent yield, cyclic hysteresis, and progressive stress-softening before the attainment of stable cyclic response. The model is based on deformation mechanisms experimentally observed during quasi-static monotonic and cyclic compression of mock plastic-bonded explosives (PBX) at large strain. An additive decomposition of strain energy into elastic and inelastic parts is assumed, where the elastic response is modeled using Ogden hyperelasticity while the inelastic response is described using yield-surface-free endochronic plasticity based on the concepts of internal variables and of evolution or rate equations. Stress-softening is modeled using two approaches; a discontinuous isotropic damage model to appropriately describe the softening in the overall loading–unloading response, and a material scale function to describe the progressive cyclic softening until cyclic stabilization. A nonlinear multivariate optimization procedure is developed to estimate the elastoplastic model parameters from nominal stress–strain experimental compression data. Finally, a correlation between model parameters and the unique stress–strain response of mock PBX specimens with differing concentrations of aluminum is identified, thus establishing a relationship between model parameters and material composition.

References

1.
Rattanasom
,
N.
,
Saowapark
,
T.
, and
Deeprasertkul
,
C.
,
2007
, “
Reinforcement of Natural Rubber With Silica/Carbon Black Hybrid Filler
,”
Polym. Test.
,
26
(
3
), pp.
369
377
.
2.
Omnès
,
B.
,
Thuillier
,
S.
,
Pilvin
,
P.
,
Grohens
,
Y.
, and
Gillet
,
S.
,
2008
, “
Effective Properties of Carbon Black Filled Natural Rubber: Experiments and Modeling
,”
Compos. Pt. A-Appl. Sci. Manuf.
,
39
(
7
), pp.
1141
1149
.
3.
Akhavan
,
J.
,
2011
,
Chemistry of Explosives
,
Royal Society of Chemistry
,
Cambridge, UK
.
4.
Palmer
,
S. J. P.
,
Field
,
J. E.
, and
Huntley
,
J. M.
,
1993
, “
Deformation, Strengths and Strains to Failure of Polymer Bonded Explosives
,”
Proc. R. Soc. London, A
,
440
(
1909
), pp.
399
419
.
5.
Rae
,
P. J.
,
Goldrein
,
H. T.
,
Palmer
,
S. J. P.
,
Field
,
J. E.
, and
Lewis
,
A. L.
,
2002
,
Quasi-static Studies of the Deformation and Failure of β-HMX Based Polymer Bonded Explosives
,
Proc. Math. Phys. Eng. Sci.
,
458
(
2019
), pp.
743
762
.
6.
Rangaswamy
,
P.
,
Thompson
,
D. G.
,
Liu
,
C.
, and
Lewis
,
M. W.
,
2010
, “
Modeling the Mechanical Response of PBX 9501
,”
Proceedings of the 14th International Detonation Symposium
,
Coeur D’Alene, ID
,
Apr. 11–16
, pp.
174
183
.
7.
Yılmaz
,
G. A.
,
Şen
,
D.
,
Kaya
,
Z. T.
, and
Tinçer
,
T.
,
2014
, “
Effect of Inert Plasticizers on Mechanical, Thermal, and Sensitivity Properties of Polyurethane-Based Plastic Bonded Explosives
,”
J. Appl. Polym. Sci.
,
131
(
20
), p.
40907
.
8.
Kumar
,
A.
,
Rao
,
V.
,
Sinha
,
R.
, and
Rao
,
A.
,
2010
, “
Evaluation of Plastic Bonded Explosive (PBX) Formulations Based on RDX, Aluminum, and HTPB for Underwater Applications
,”
Propellants, Explos., Pyrotech.
,
35
(
4
), pp.
359
364
.
9.
Wiegand
,
D. A.
,
2000
, “
The Influence of Confinement on the Mechanical Properties of Energetic Materials
,”
AIP Conf. Proc.
,
505
(
1
), pp.
675
678
.
10.
Wiegand
,
D. A.
, and
Reddingius
,
B.
,
2005
, “
Mechanical Properties of Confined Explosives
,”
J. Energ. Mater.
,
23
(
2
), pp.
75
98
.
11.
Drodge
,
D. R.
, and
Williamson
,
D. M.
,
2016
, “
Understanding Damage in Polymer-Bonded Explosive Composites
,”
J. Mater. Sci.
,
51
(
2
), pp.
668
679
.
12.
Idar
,
D. J.
,
Thompson
,
D. G.
,
Gray
,
G. T.
,
Blumenthal
,
W. R.
,
Cady
,
C. M.
,
Peterson
,
P. D.
,
Roemer
,
E. L.
,
Wright
,
W. J.
, and
Jacquez
,
B. J.
,
2002
, “
Influence of Polymer Molecular Weight, Temperature, and Strain Rate on the Mechanical Properties of PBX 9501
,”
AIP Conf. Proc.
,
620
(
1
), pp.
821
824
.
13.
Thompson
,
D. G.
,
Idar
,
D. J.
,
Gray
,
G.
,
Blumenthal
,
W. R.
,
Cady
,
C. M.
,
Roemer
,
E. L.
,
Wright
,
W. J.
, and
Peterson
,
P. D.
,
2002
, “
Quasi-static and Dynamic Mechanical Properties of New and Virtually-Aged PBX 9501 Composites as a Function of Temperature and Strain Rate
,”
Proceedings of the 12th International Detonation Symposium
,
San Diego, CA
,
Aug. 11–16
, pp.
363
368
.
14.
Williamson
,
D. M.
,
Siviour
,
C. R.
,
Proud
,
W. G.
,
Palmer
,
S. J. P.
,
Govier
,
R.
,
Ellis
,
K.
,
Blackwell
,
P.
, and
Leppard
,
C.
,
2008
, “
Temperature-Time Response of a Polymer Bonded Explosive in Compression (EDC37)
,”
J. Phys. D: Appl. Phys.
,
41
(
8
), p.
085404
.
15.
Bardenhagen
,
S.
,
Harstad
,
E.
,
Maudlin
,
P.
,
Gray
,
G.
, and
Foster Jr
,
J.
,
1998
, “
Viscoelastic Models for Explosive Binder Materials
,”
AIP Conf. Proc.
,
429
(
1
), pp.
281
284
.
16.
Clements
,
B. E.
, and
Mas
,
E. M.
,
2001
, “
Dynamic Mechanical Behavior of Filled Polymers. I. Theoretical Developments
,”
J. Appl. Phys.
,
90
(
11
), pp.
5522
5534
.
17.
Bennett
,
J. G.
,
Haberman
,
K. S.
,
Johnson
,
J. N.
, and
Asay
,
B. W.
,
1998
, “
A Constitutive Model for the Non-shock Ignition and Mechanical Response of High Explosives
,”
J. Mech. Phys. Solids
,
46
(
12
), pp.
2303
2322
.
18.
Addessio
,
F. L.
, and
Johnson
,
J. N.
,
1990
, “
A Constitutive Model for the Dynamic Response of Brittle Materials
,”
J. Appl. Phys.
,
67
(
7
), pp.
3275
3286
.
19.
Dienes
,
J. K.
,
1996
, “A Unified Theory of Flow, Hot Spots, and Fragmentation With an Application to Explosive Sensitivity,”
High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation
,
L.
Davison
,
D. E.
Grady
, and
M
.
Shahinpoor
, eds.,
Springer
,
New York
, pp.
366
398
.
20.
Buechler
,
M. A.
, and
Luscher
,
D. J.
,
2014
, “
A Semi-implicit Integration Scheme for a Combined Viscoelastic-Damage Model of Plastic Bonded Explosives
,”
Int. J. Numer Methods Eng.
,
99
(
1
), pp.
54
78
.
21.
Paripovic
,
J.
, and
Davies
,
P.
,
2013
, “
Identification of the Dynamic Behavior of Surrogate Explosive Materials
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 22nd Reliability, Stress Analysis, and Failure Prevention Conference; 25th Conference on Mechanical Vibration and Noise
,
Portland, OR
,
Aug. 4–7
, ASME, p. V008T13A066.
22.
Paripovic
,
J.
, and
Davies
,
P.
,
2016
, “
A Model Identification Technique to Characterize the Low Frequency Behaviour of Surrogate Explosive Materials
,”
J. Phys. Conf. Ser.
,
744
, p.
012124
.
23.
Agarwal
,
A.
, and
Gonzalez
,
M.
,
2020
, “
Effects of Cyclic Loading and Time-Recovery on Microstructure and Mechanical Properties of Particle-Binder Composites
,”
ASME J. Appl. Mech.
,
87
(
10
), p.
101008
.
24.
Lochert
,
I. J.
,
Dexter
,
R. M.
, and
Hamshere
,
B. L.
,
2002
,
Evaluation of Australian RDX in PBXN-109, DSTO-TN-0440., Defence Science
,
Technology Organisation, Weapons Systems Division
,
Edinburgh (SA), Australia
.
25.
Pijaudier-Cabot
,
G.
,
Bittnar
,
Z.
, and
Gérard
,
B.
,
1999
,
Mechanics of Quasi-brittle Materials and Structures
,
Hermes Science Publications
,
Paris, France
.
26.
Idar
,
D.
,
Peterson
,
P.
,
Scott
,
P.
, and
Funk
,
D.
,
1998
, “
Low Strain Rate Compression Measurements of PBXN-9, PBX 9501, and Mock 9501
,”
AIP Conf. Proc.
,
429
(
1
), pp.
587
590
.
27.
Trumel
,
H.
,
Lambert
,
P.
, and
Biessy
,
M.
,
2012
, “
Mechanical and Microstructural Characterization of a HMX-Based Pressed Explosive: Effects of Combined High Pressure and Strain Rate
,”
EPJ Web Conf.
,
26
, p.
02005
.
28.
Keyhani
,
A.
,
Kim
,
S.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2019
, “
Energy Dissipation in Polymer-Bonded Explosives With Various Levels of Constituent Plasticity and Internal Friction
,”
Comput. Mater. Sci.
,
159
, pp.
136
149
.
29.
Le
,
V. D.
,
Gratton
,
M.
,
Caliez
,
M.
,
Frachon
,
A.
, and
Picart
,
D.
,
2010
, “
Experimental Mechanical Characterization of Plastic-Bonded Explosives
,”
J. Mater. Sci.
,
45
(
21
), pp.
5802
5813
.
30.
Yang
,
K.
,
Wu
,
Y.
, and
Huang
,
F.
,
2018
, “
Numerical Simulations of Microcrack-Related Damage and Ignition Behavior of Mild-Impacted Polymer Bonded Explosives
,”
J. Hazard. Mater.
,
356
, pp.
34
52
.
31.
Tang
,
M.
,
Pang
,
H.
,
Lan
,
L.
,
Wen
,
M.
, and
Ming
,
L.
,
2016
, “
Constitutive Behavior of RDX-Based PBX With Loading-History and Loading-Rate Effects
,”
Chin. J. Energ. Mater.
,
24
(
9
), pp.
832
837
.
32.
Laiarinandrasana
,
L.
,
Piques
,
R.
, and
Robisson
,
A.
,
2003
, “
Visco-hyperelastic Model With Internal State Variable Coupled With Discontinuous Damage Concept Under Total Lagrangian Formulation
,”
Int. J. Plast.
,
19
(
7
), pp.
977
1000
.
33.
Ayoub
,
G.
,
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
,
Gloaguen
,
J. M.
, and
Kridli
,
G.
,
2014
, “
A Visco-hyperelastic Damage Model for Cyclic Stress-Softening, Hysteresis and Permanent Set in Rubber Using the Network Alteration Theory
,”
Int. J. Plast.
,
54
, pp.
19
33
.
34.
Österlöf
,
R.
,
Wentzel
,
H.
, and
Kari
,
L.
,
2016
, “
A Finite Strain Viscoplastic Constitutive Model for Rubber With Reinforcing Fillers
,”
Int. J. Plast.
,
87
, pp.
1
14
.
35.
Guo
,
Q.
,
Zaïri
,
F.
, and
Guo
,
X.
,
2018
, “
A Thermo-viscoelastic-Damage Constitutive Model for Cyclically Loaded Rubbers. Part I: Model Formulation and Numerical Examples
,”
Int. J. Plast.
,
101
, pp.
106
124
.
36.
Guo
,
Q.
,
Zaïri
,
F.
, and
Guo
,
X.
,
2018
, “
A Thermo-Viscoelastic-Damage Constitutive Model for Cyclically Loaded Rubbers. Part II: Experimental Studies and Parameter Identification
,”
Int. J. Plast.
,
101
, pp.
58
73
.
37.
Chen
,
Y.
,
Kang
,
G.
,
Yuan
,
J.
, and
Yu
,
C.
,
2018
, “
Uniaxial Ratchetting of Filled Rubber: Experiments and Damage-Coupled Hyper-viscoelastic-Plastic Constitutive Model
,”
ASME J. Appl. Mech.
,
85
(
6
), p.
061013
.
38.
Dargazany
,
R.
,
Khiêm
,
V. N.
, and
Itskov
,
M.
,
2014
, “
A Generalized Network Decomposition Model for the Quasi-static Inelastic Behavior of Filled Elastomers
,”
Int. J. Plast.
,
63
, pp.
94
109
.
39.
Raghunath
,
R.
,
Juhre
,
D.
, and
Klüppel
,
M.
,
2016
, “
A Physically Motivated Model for Filled Elastomers Including Strain Rate and Amplitude Dependency in Finite Viscoelasticity
,”
Int. J. Plast.
,
78
, pp.
223
241
.
40.
Plagge
,
J.
, and
Klüppel
,
M.
,
2017
, “
A Physically Based Model of Stress Softening and Hysteresis of Filled Rubber Including Rate- and Temperature Dependency
,”
Int. J. Plast.
,
89
, pp.
173
196
.
41.
Mullins
,
L.
,
1948
, “
Effect of Stretching on the Properties of Rubber
,”
Rubber Chem. Technol.
,
21
(
2
), pp.
281
300
.
42.
Mullins
,
L.
,
1969
, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
,
42
(
1
), pp.
339
362
.
43.
Marckmann
,
G.
,
Verron
,
E.
,
Gornet
,
L.
,
Chagnon
,
G.
,
Charrier
,
P.
, and
Fort
,
P.
,
2002
, “
A Theory of Network Alteration for the Mullins Effect
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
2011
2028
.
44.
Chagnon
,
G.
,
Verron
,
E.
,
Marckmann
,
G.
, and
Gornet
,
L.
,
2006
, “
Development of New Constitutive Equations for the Mullins Effect in Rubber Using the Network Alteration Theory
,”
Int. J. Solids Struct.
,
43
(
22
), pp.
6817
6831
.
45.
Klüppel
,
M.
,
2003
, “The Role of Disorder in Filler Reinforcement of Elastomers on Various Length Scales,”
Filler-Reinforced Elastomers Scanning Force Microscopy
, 1, Vol.
164
,
B.
Capella
,
M.
Geuss
,
M.
Klüppel
,
M.
Munz
,
E.
Schulz
, and
H.
Sturm
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
1
86
.
46.
Kaliske
,
M.
, and
Rothert
,
H.
,
1998
, “
Constitutive Approach to Rate-Independent Properties of Filled Elastomers
,”
Int. J. Solids Struct.
,
35
(
17
), pp.
2057
2071
.
47.
Valanis
,
K. C.
,
1970
,
A Theory of Viscoplasticity Without a Yield Surface Part 1—General Theory
,
Air Force Office of Scientific Research, Office of Aerospace Research, US Air Force
,
Arlington, VA
.
48.
Netzker
,
C.
,
Dal
,
H.
, and
Kaliske
,
M.
,
2010
, “
An Endochronic Plasticity Formulation for Filled Rubber
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2371
2379
.
49.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
50.
Govindjee
,
S.
, and
Simo
,
J.
,
1991
, “
A Micro-mechanically Based Continuum Damage Model for Carbon Black-Filled Rubbers Incorporating Mullins’ Effect
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
87
112
.
51.
Holzapfel
,
G. A.
, and
Simo
,
J. C.
,
1996
, “
A New Viscoelastic Constitutive Model for Continuous Media at Finite Thermomechanical Changes
,”
Int. J. Solids Struct.
,
33
(
20
), pp.
3019
3034
.
52.
Holzapfel
,
G. A.
,
1996
, “
On Large Strain Viscoelasticity: Continuum Formulation and Finite Element Applications to Elastomeric Structures
,”
Int. J. Numer Methods Eng.
,
39
(
22
), pp.
3903
3926
.
53.
Holzapfel
,
G. A.
,
2002
, “
Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science
,”
Meccanica
,
37
(
4
), pp.
489
490
.
54.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
326
(
1567
), pp.
565
584
.
55.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
328
(
1575
), pp.
567
583
.
56.
Horstemeyer
,
M. F.
, and
Bammann
,
D. J.
,
2010
, “
Historical Review of Internal State Variable Theory for Inelasticity
,”
Int. J. Plast.
,
26
(
9
), pp.
1310
1334
.
57.
Kachanov
,
L. M.
,
1986
,
Introduction to Continuum Damage Mechanics
,
Springer
,
Netherlands
.
58.
Lemaitre
,
J.
,
Chaboche
,
J.-L.
, and
Germain
,
P.
,
1985
,
Mécanique Des Matériaux Solides
,
Dunod
,
Paris, France
.
59.
Wu
,
H.
, and
Yip
,
M.
,
1981
, “
Endochronic Description of Cyclic Hardening Behavior for Metallic Materials
,”
ASME J. Eng. Mater. Technol.
,
103
(
3
), pp.
212
217
.
60.
Yeh
,
W.-C.
,
1995
, “
Verification of the Endochronic Theory of Plasticity Under Biaxial Load
,”
J. Chin. Inst. Eng.
,
18
(
1
), pp.
25
34
.
61.
Lin
,
H.-Y.
,
Yeh
,
W.-C.
, and
Lee
,
W.-J.
,
2007
, “
A Material Function of Endochronic Theory and Its Application to Test Under Axisymmetrically Cyclic Loading Conditions
,”
J. Mech.
,
23
(
2
), pp.
135
148
.
62.
Kröner
,
E.
,
1959
, “
Allgemeine Kontinuumstheorie Der Versetzungen Und Eigenspannungen
,”
Arch. Ration. Mech. Anal.
,
4
(
1
), pp.
273
334
.
63.
Lee
,
E.
, and
Liu
,
D.
,
1967
, “
Finite-Strain Elastic-Plastic Theory With Application to Plane-Wave Analysis
,”
J. Appl. Phys.
,
38
(
1
), pp.
19
27
.
64.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.
65.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2005
, “
The Decomposition F = FeFp, Material Symmetry, and Plastic Irrotationality for Solids That Are Isotropic-Viscoplastic or Amorphous
,”
Int. J. Plast.
,
21
(
9
), pp.
1686
1719
.
66.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
67.
Hill
,
R.
,
1958
, “
A General Theory of Uniqueness and Stability in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
6
(
3
), pp.
236
249
.
68.
Prager
,
W.
,
1961
, “
An Elementary Discussion of Definitions of Stress Rate
,”
Q. Appl. Math.
,
18
(
4
), pp.
403
407
.
69.
Blanchard
,
A. F.
, and
Parkinson
,
D.
,
1952
, “
Breakage of Carbon-Rubber Networks by Applied Stress
,”
Ind. Eng. Chem.
,
44
(
4
), pp.
799
812
.
70.
Bueche
,
F.
,
1960
, “
Molecular Basis for the Mullins Effect
,”
J. Appl. Polym. Sci.
,
4
(
10
), pp.
107
114
.
71.
Houwink
,
R.
,
1956
, “
Slipping of Molecules During the Deformation of Reinforced Rubber
,”
Rubber Chem. Technol.
,
29
(
3
), pp.
888
893
.
72.
Clément
,
F.
,
Bokobza
,
L.
, and
Monnerie
,
L.
,
2001
, “
On the Mullins Effect in Silica-Filled Polydimethylsiloxane Networks
,”
Rubber Chem. Technol.
,
74
(
5
), pp.
847
870
.
73.
Kraus
,
G.
,
Childers
,
C. W.
, and
Rollmann
,
K. W.
,
1966
, “
Stress Softening in Carbon Black-Reinforced Vulcanizates. Strain Rate and Temperature Effects
,”
J. Appl. Polym. Sci.
,
10
(
2
), pp.
229
244
.
74.
Klüppel
,
M.
, and
Schramm
,
J.
,
2000
, “
A Generalized Tube Model of Rubber Elasticity and Stress Softening of Filler Reinforced Elastomer Systems
,”
Macromol. Theory Simul.
,
9
(
9
), pp.
742
754
.
75.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
,
1999
, “
A Pseudoelastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. London, Ser. A
,
455
(
1988
), pp.
2861
2877
.
76.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2003
, “
A Pseudo-elastic Model for Loading, Partial Unloading and Reloading of Particle-Reinforced Rubber
,”
Int. J. Solids Struct.
,
40
(
11
), pp.
2699
2714
.
77.
Zúñiga
,
A. E.
, and
Beatty
,
M. F.
,
2002
, “
A New Phenomenological Model for Stress-Softening in Elastomers
,”
J. Appl. Math. Phy.
,
53
(
5
), pp.
794
814
.
78.
Miehe
,
C.
,
1995
, “
Discontinuous and Continuous Damage Evolution in Ogden-Type Large-Strain Elastic Materials
,”
Eur. J. Mech. A Solids
,
14
(
5
), pp.
697
720
.
79.
Kaliske
,
M.
,
Nasdala
,
L.
, and
Rothert
,
H.
,
2001
, “
On Damage Modelling for Elastic and Viscoelastic Materials at Large Strain
,”
Comput. Struct.
,
79
(
22–25
), pp.
2133
2141
.
80.
Lin
,
R. C.
, and
Schomburg
,
U.
,
2003
, “
A Finite Elastic–Viscoelastic–Elastoplastic Material Law With Damage: Theoretical and Numerical Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
13–14
), pp.
1591
1627
.
81.
Rickaby
,
S. R.
, and
Scott
,
N. H.
,
2013
, “
Cyclic Stress-Softening Model for the Mullins Effect in Compression
,”
Int. J. Non Linear Mech.
,
49
, pp.
152
158
.
82.
Diani
,
J.
,
Fayolle
,
B.
, and
Gilormini
,
P.
,
2009
, “
A Review on the Mullins Effect
,”
Eur. Polym. J.
,
45
(
3
), pp.
601
612
.
83.
Naumann
,
C.
, and
Ihlemann
,
J.
,
2015
, “
On the Thermodynamics of Pseudo-elastic Material Models Which Reproduce the Mullins Effect
,”
Int. J. Solids Struct.
,
69–70
, pp.
360
369
.
84.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
.
85.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
613
.
86.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
87.
Rivlin
,
R.
,
1948
, “
Large Elastic Deformations of Isotropic Materials IV. Further Developments of the General Theory
,”
Philos. Trans. Royal Soc.
,
241
(
835
), pp.
379
397
.
88.
Boyce
,
M. C.
, and
Arruda
,
E. M.
,
2000
, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
(
3
), pp.
504
523
.
89.
Ogden
,
R. W.
,
1984
,
Non-linear Elastic Deformations
,
Dover Publications
,
Mineola, NY.
90.
Beatty
,
M. F.
, and
Krishnaswamy
,
S.
,
2000
, “
A Theory of Stress-Softening in Incompressible Isotropic Materials
,”
J. Mech. Phys. Solids
,
48
(
9
), pp.
1931
1965
.
91.
Valanis
,
K. C.
, and
Lee
,
C.
,
1984
, “
Endochronic Theory of Cyclic Plasticity With Applications
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
367
374
.
92.
Guo
,
J.
,
Wu
,
L.
,
Yang
,
X.
, and
Zhong
,
S.
,
2016
, “
Elastic-Plastic Endochronic Constitutive Model of 0Crl7Ni4Cu4Nb Stainless Steels
,”
Math. Probl. Eng.
,
2016
, pp.
1
16
.
93.
Valanis
,
K.
, and
Read
,
H.
,
1986
, “
An Endochronic Plasticity Theory for Concrete
,”
Mech. Mater.
,
5
(
3
), pp.
277
295
.
94.
Bakhshiani
,
A.
,
Khoei
,
A.
, and
Mofid
,
M.
,
2002
, “
An Endochronic Plasticity Model for Powder Compaction Processes
,”
J. Mater. Process. Technol.
,
125–126
, pp.
138
143
.
95.
Khoei
,
A.
,
Bakhshiani
,
A.
, and
Mofid
,
M.
,
2003
, “
An Endochronic Plasticity Model for Finite Strain Deformation of Powder Forming Processes
,”
Finite Elem. Anal. Des.
,
40
(
2
), pp.
187
211
.
96.
Khoei
,
A.
, and
Bakhshiani
,
A.
,
2004
, “
A Hypoelasto-Plastic Finite Strain Simulation of Powder Compaction Processes With Density-Dependent Endochronic Model
,”
Int. J. Solids Struct.
,
41
(
22–23
), pp.
6081
6110
.
97.
Hsu
,
S. Y.
,
Jain
,
S. K.
, and
Griffin
,
O. H.
,
1991
, “
Verification of Endochronic Theory for Nonproportional Loading Paths
,”
J. Eng. Mech.
,
117
(
1
), pp.
110
131
.
98.
Valanis
,
K. C.
,
1972
,
Irreversible Thermodynamics of Continuous Media: Internal Variable Theory
, Vol.
1
,
Springer
,
Vienna
.
99.
Coleman
,
B. D.
,
1964
, “
Thermodynamics of Materials With Memory
,”
Arch. Ration. Mech. Anal.
,
17
(
1
), pp.
1
46
.
100.
MATLAB®, Version 9.4.0
,
2018
,
Natick, Massachusetts: The Mathworks Inc., 1984–2018
.
You do not currently have access to this content.