Abstract

Implantable bioelectronic devices with drug delivery capabilities have emerged as suitable candidates for biomedical applications focusing on localized drug delivery. These classes of miniaturized bioelectronics offer wireless operation and refillable designs that can be used for repeated animal behavioral studies without restricting their motion. The pumping mechanisms of these bioelectronic devices features soft materials, microfluidics, and electrochemical subsystems that can be scaled from behavioral studies in small animals to delivery of life-saving medication in humans. Here, we study the refillable aspect of these bioelectronic systems using an analytic model for the drug delivery time established from the ideal gas law when an initial gas volume is present in the device electrolyte reservoirs. The effect of the initial gas volume in delaying the drug delivery time is captured via a non-dimensional parameter identified as the normalized initial gas volume. An analytical solution is derived from the perturbation method, which agrees well with the numerical solution. These results have relevance in the reusability aspect of these bioelectronic systems since modifying the amount of initial gas in the device reservoirs for different experiments affects the total delivery time and can serve as a tunable parameter to ensure timely and successful delivery of the drug in the target region.

References

1.
Jeong
,
J. W.
,
McCall
,
J. G.
,
Shin
,
G.
,
Zhang
,
Y.
,
Al-Hasani
,
R.
,
Kim
,
M.
,
Li
,
S.
,
Sim
,
J. Y.
,
Jang
,
K. I.
,
Shi
,
Y.
,
Hong
,
D. Y.
,
Liu
,
Y.
,
Schmitz
,
G. P.
,
Xia
,
L.
,
He
,
Z.
,
Gamble
,
P.
,
Ray
,
W. Z.
,
Huang
,
Y.
,
Bruchas
,
M. R.
, and
Rogers
,
J. A.
,
2015
, “
Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics
,”
Cell
,
162
(
3
), pp.
662
674
.
2.
Spieth
,
S.
,
Schumacher
,
A.
,
Holtzman
,
T.
,
Rich
,
P. D.
,
Theobald
,
D. E.
,
Dalley
,
J. W.
,
Nouna
,
R.
,
Messner
,
S.
, and
Zengerle
,
R.
,
2012
, “
An Intra-Cerebral Drug Delivery System for Freely Moving Animals
,”
Biomed. Microdevices
,
14
(
5
), pp.
799
809
.
3.
Gensler
,
H.
,
Sheybani
,
R.
,
Li
,
P. Y.
,
Mann
,
R. L.
, and
Meng
,
E.
,
2012
, “
An Implantable MEMS Micropump System for Drug Delivery in Small Animals
,”
Biomed. Microdevices
,
14
(
3
), pp.
483
496
.
4.
Zhang
,
Y.
,
Mickle
,
A. D.
,
Gutruf
,
P.
,
McIlvried
,
L. A.
,
Guo
,
H.
,
Wu
,
Y.
,
Golden
,
J. P.
,
Xue
,
Y.
,
Grajales-Reyes
,
J. G.
,
Wang
,
X.
,
Krishnan
,
S.
,
Xie
,
Y.
,
Peng
,
D.
,
Su
,
C. J.
,
Zhang
,
F.
,
Reeder
,
J. T.
,
Vogt
,
S. K.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Gereau
,
R. W.
,
2019
, “
Battery-Free, Fully Implantable Optofluidic Cuff System for Wireless Optogenetic and Pharmacological Neuromodulation of Peripheral Nerves
,”
Sci. Adv.
,
5
(
7
), pp.
1
12
.
5.
Zhang
,
Y.
,
Castro
,
D. C.
,
Han
,
Y.
,
Wu
,
Y.
,
Guo
,
H.
,
Weng
,
Z.
,
Xue
,
Y.
,
Ausra
,
J.
,
Wang
,
X.
,
Li
,
R.
,
Wu
,
G.
,
Vázquez-Guardado
,
A.
,
Xie
,
Y.
,
Xie
,
Z.
,
Ostojich
,
D.
,
Peng
,
D.
,
Sun
,
R.
,
Wang
,
B.
,
Yu
,
Y.
,
Leshock
,
J. P.
,
Qu
,
S.
,
Su
,
C. J.
,
Shen
,
W.
,
Hang
,
T.
,
Banks
,
A.
,
Huang
,
Y.
,
Radulovic
,
J.
,
Gutruf
,
P.
,
Bruchas
,
M. R.
, and
Rogers
,
J. A.
,
2019
, “
Battery-Free, Lightweight, Injectable Microsystem for in Vivo Wireless Pharmacology and Optogenetics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
43
), pp.
21427
21437
.
6.
Kumar
,
A.
, and
Pillai
,
J.
,
2018
, “Implantable Drug Delivery Systems: An Overview,”
Nanostructures for the Engineering of Cells, Tissues and Organs
,
Alexandru Mihai
Grumezescu
, ed.,
William Andrew Publishing
,
Cambridge, MA
, pp.
473
511
.
7.
Koo
,
J.
,
Kim
,
S. B.
,
Choi
,
Y. S.
,
Xie
,
Z.
,
Bandodkar
,
A. J.
,
Khalifeh
,
J.
,
Yan
,
Y.
, et al
,
2020
, “
Wirelessly Controlled, Bioresorbable Drug Delivery Device with Active Valves That Exploit Electrochemically Triggered Crevice Corrosion
,”
Sci. Adv.
,
6
(
35
), p.
eabb1093
.
8.
Qazi
,
R.
,
Yeon Kim
,
C.
,
Kang
,
I.
,
Binazarov
,
D.
,
McCall
,
G.
,
and Jeong
,
J.
, and
W
,
J.
,
2020
, “
Implantable Optofluidic Systems for Wireless In Vivo Photopharmacology
,”
ChemPhotoChem
,
5
, pp.
96
105
.
9.
Vargason
,
A. M.
,
Anselmo
,
A. C.
, and
Mitragotri
,
S.
,
2021
, “
The Evolution of Commercial Drug Delivery Technologies
,”
Nat. Biomed. Eng.
,
5
(
9
), pp.
951
967
.
10.
Villarruel Mendoza
,
L. A.
,
Scilletta
,
N. A.
,
Bellino
,
M. G.
,
Desimone
,
M. F.
, and
Catalano
,
P. N.
,
2020
, “
Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications
,”
Front. Bioeng. Biotechnol.
,
8
, pp.
1
28
.
11.
Stewart
,
S. A.
,
Domínguez-Robles
,
J.
,
Donnelly
,
R. F.
, and
Larrañeta
,
E.
,
2018
, “
Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications
,”
Polymers
,
10
(
12
), p.
1379
.
12.
Bußmann
,
A. B.
,
Grünerbel
,
L. M.
,
Durasiewicz
,
C. P.
,
Thalhofer
,
T. A.
,
Wille
,
A.
, and
Richter
,
M.
,
2021
, “
Microdosing for Drug Delivery Application—A Review
,”
Sens. Actuators, A
,
330
, p.
112820
.
13.
Laracuente
,
M. L.
,
Yu
,
M. H.
, and
McHugh
,
K. J.
,
2020
, “
Zero-Order Drug Delivery: State of the Art and Future Prospects
,”
J. Controlled Release
,
327
, pp.
834
856
.
14.
Stearns
,
L. J.
,
Narang
,
S.
,
Albright
,
R. E.
,
Hammond
,
K.
,
Xia
,
Y.
,
Richter
,
H. B.
,
Paramanandam
,
G. K.
,
Haagenson
,
K. K.
, and
Doth
,
A. H.
,
2019
, “
Assessment of Health Care Utilization and Cost of Targeted Drug Delivery and Conventional Medical Management vs Conventional Medical Management Alone for Patients With Cancer-Related Pain
,”
JAMA Netw. Open
,
2
(
4
), p.
e191549
.
15.
Chen
,
Y.
,
Rommelfanger
,
N. J.
,
Mahdi
,
A. I.
,
Wu
,
X.
,
Keene
,
S. T.
,
Obaid
,
A.
,
Salleo
,
A.
,
Wang
,
H.
, and
Hong
,
G.
,
2021
, “
How Is Flexible Electronics Advancing Neuroscience Research?
,”
Biomaterials
,
268
, p.
120559
.
16.
Gensler
,
H.
,
Sheybani
,
R.
,
Li
,
P.
,
Lo
,
R.
,
Zhu
,
S.
,
Yong
,
K.
,
Prasad
,
P. N.
,
Masood
,
R.
,
Sinha
,
U. K.
, and
Meng
,
E.
,
2010
, “
Implantable Mems Drug Delivery Device For Cancer Radiation Reduction
,”
2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).
,
Hong Kong, China
,
Jan. 24–28
.
17.
Rosenblum
,
D.
,
Joshi
,
N.
,
Tao
,
W.
,
Karp
,
J. M.
, and
Peer
,
D.
,
2018
, “
Progress and Challenges Towards Targeted Delivery of Cancer Therapeutics
,”
Nat. Commun.
,
9
(
1
), p.
1410
.
18.
Cobo
,
A.
,
Sheybani
,
R.
,
Tu
,
H.
, and
Meng
,
E.
,
2016
, “
A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer
,”
Sens. Actuators, A
,
239
, pp.
18
25
.
19.
Avila
,
R.
,
Li
,
C.
,
Xue
,
Y.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2021
, “
Modeling Programmable Drug Delivery in Bioelectronics with Electrochemical Actuation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
11
), p.
e2026405118
.
20.
Stanczyk
,
T.
,
Ilic
,
B.
,
Hesketh
,
P. J.
, and
Boyd IV
,
J. G.
,
2000
, “
Microfabricated Electrochemical Actuator for Large Displacements
,”
J. Microelectromech. Syst.
,
9
(
3
), pp.
314
320
.
21.
Pang
,
C.
,
Tai
,
Y. C.
,
Burdick
,
J. W.
, and
Andersen
,
R. A.
,
2006
, “
Electrolysis-Based Diaphragm Actuators
,”
Nanotechnology
,
17
(
4
), pp.
64
68
.
22.
Lee
,
D. E.
,
Soper
,
S. A.
, and
Wang
,
W.
,
2010
, “
Fabrication and Mathematical Analysis of an Electrochemical Microactuator (ECM) Using Electrodes Coated with Platinum Nano-Particles
,”
Microsyst. Technol.
,
16
(
3
), pp.
381
390
.
23.
Ashraf
,
M. W.
,
Tayyaba
,
S.
, and
Afzulpurkar
,
N.
,
2011
, “
Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications
,”
Int. J. Mol. Sci.
,
12
(
6
), pp.
3648
3704
.
24.
Urone
,
P. P.
, and
Hinrichs
,
R.
,
2012
, “College Physics,”
College Physics
,
OpenStax
,
Houston, Texas
, pp.
465
466
.
25.
Beebe
,
D. J.
,
Mensing
,
G. A.
, and
Walker
,
G. M.
,
2002
, “
Physics and Applications of Microfluidics in Biology
,”
Annu. Rev. Biomed. Eng.
,
4
(
1
), pp.
261
286
.
26.
Pardoen
,
G. C.
, and
Hagen
,
R. L.
,
1972
, “
Symmetrical Bending of Circular Plates Using Finite Elements
,”
Comput. Struct.
,
2
(
4
), pp.
547
553
.
27.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
28.
Avila
,
R.
,
Wu
,
Y.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2021
, “
A Mechanics Model for Injectable Microsystems in Drug Delivery
,”
J. Mech. Phys. Solids
,
156
, p.
104622
.
29.
Marlow
,
R. S.
,
2003
, “
A General First-Invariant Hyperelastic Constitutive Model
,”
Constitutive Models For Rubber – Proceedings Constitutive Models for Rubber
,
London, UK
,
Sept. 15–17
, pp.
157
160
.
30.
Kumar
,
M.
,
2011
, “
Methods for Solving Singular Perturbation Problems Arising in Science and Engineering
,”
Math. Comput. Model.
,
54
(
1–2
), pp.
556
575
.
31.
Cameron
,
C. G.
, and
Freund
,
M. S.
,
2002
, “
Electrolytic Actuators: Alternative, High-Performance, Material-Based Devices
,”
Proc. Natl. Acad. Sci. U. S. A.
,
99
(
12
), pp.
7827
7831
.
32.
Feiner
,
A. S.
, and
McEvoy
,
A. J.
,
1994
, “
The Nernst Equation
,”
J. Chem. Educ.
,
71
(
6
), pp.
493
494
.
33.
Silbey
,
R. J.
,
Alberty
,
R. A.
, and
Bawendi
,
M. G.
,
2004
, “Physical Chemistry,”
Physical Chemistry
,
John Wiley & Sons
, pp.
17
21
.
You do not currently have access to this content.